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Abstract

Large-scale design optimizations of electric vehicles have been limited in the past due to a

lack of computational power. In order to fully utilize the potential of EV technology, novel optimiza-

tion methods need to be developed. This dissertation investigates new opportunities for EV system

optimization evolving from recent advancements in parallel processing hardware. The power train

and control system of a fuel cell hybrid electric vehicle are optimized on the parallel architecture

of graphics processing units. A two-level optimization methodology is developed specifically for

peak performance on GPU architectures. Computational speedup factors of more than 2,000x and

70,000x are achieved over a sequential C/C++ implementation and the Matlab/Simulink environ-

ment, respectively. The significant gain in computation speed enables incorporation of expensive

lifetime effects, such as battery degradation, as well as parameter uncertainties, such as variations in

driving patterns. To achieve this, the entire lifetime of a vehicle is simulated during the optimization.

Therefore, a novel methodology is proposed to generate stochastic drive cycles based on applica-

tion and driver-specific driving profiles. Results show that the generated drive cycles accurately

represent driving profiles with respect to the frequency spectra, speed distribution, acceleration dis-

tribution, and load characteristics of their corresponding duty cycles. Overall, the novel approach

broadens the scope of conventional EV optimization methodologies and therefore increases the sig-

nificance of results in terms of quality and accuracy. Seizing this opportunity, a variety of studies

are performed that reveal significant fuel efficiency gains through driver and application-specific

lifetime optimizations.
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Chapter 1

Introduction

1.1 Problem Description and Scope of the Research

Motivation

Considering the rising cost of gasoline, political dependencies caused by resource imports and

tougher fuel-efficiency standards, electric vehicles (EVs) and hybrid electric vehicles (HEVs) ap-

pear to be a worthwhile alternative to internal combustion (IC) power trains. This is especially true

when the vehicles are powered by low and zero-emission renewable energy sources. As a result, the

transition from internal combustion engine (ICE) cars to EVs is becoming desirable for consumers.

The market demand for EVs is predicted to significantly increase in the next decade. However,

only recently have car manufacturers started to push EVs into the consumer automotive market.

While ICE technology has enjoyed the benefits of over 130 years of research and the growth of a

technology-specific infrastructure, modern EVs are far from being technologically matured. These

shortfalls need to be made up in order to be competitive in the automotive market as EVs are ex-

pected to fulfill similar technical standards and system characteristics that are found in ICE vehicles.

EVs have the potential to be very energy efficient due to the interconnection of power sources with

different energetic properties. Most EV concepts such as hybrid electric vehicles, plug-in hybrid

electric vehicles (PHEV) or fuel cell hybrid electric vehicles (FCHEV) are characterized by a high

degree of system complexity when compared with conventional ICE power trains. The complexity

results from the combination of different power sources, electrical and mechanical components and

a sophisticated energy management strategy (EMS). Additionally, EV power sources suffer from

degradation. The power output capabilities of batteries and fuel cells change over the course of

the vehicle’s lifetime depending on their utilization. Moreover, varying degradation rates of power

sources might cause a continuous shift of the degree of hybridization (DOH). This transient sys-

1
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tem state needs to be considered in the conceptual design phase of the vehicle. In short, EV power

train designs are significantly different from conventional ICE designs. Traditional ICE design op-

timization methodologies will therefore not carry over to EV applications without modifications.

Consequently, there is a need for novel optimization methodologies specifically tailored to the de-

mands of EVs.

Previous Work concerning Optimization of Energy Management Controller

A large number of studies dealing with EV optimization have been published, which mostly

focus on energy management optimization. State-of-the-art control strategies for HEVs were clas-

sified and reviewed by Salmasi [19]. Won and Langari [20] studied a fuzzy logic-based control

approach for hybrid vehicles. The proposed control system was evaluated under the FTP751 urban

drive cycle. Johannesson and Egardt [21] employed dynamic programming (DyP) methodologies

to determine the optimal control trajectories for HEVs, which can then be used as a benchmark to

design control rules. Linear approximations of the value function and model approximations were

utilized to reduce the computation time. Lin et al. [24] applied the DyP technique to solve the opti-

mal power management problem of a hybrid electric truck by minimizing a cost function over one

drive cycle. Simplifications and look-up tables were used to achieve a reasonable computation time.

Furthermore, Lin et al. [25] investigated using stochastic dynamic programming (SDP) to find the

optimal control strategy for HEVs. The power demand from the driver was modeled as a random

Markov process. A limited number of state variables was kept in order to minimize computation

time. Rodatz et al. [22] determined the real-time optimal power distribution of a fuel cell powered

vehicle using the equivalent consumption minimization strategy (ECMS). The proposed method-

ology was tested with the NEDC2. Tulupe et al. [23] benchmarked a ECMS power management

against globally optimal dynamic programming.

Previous Work concerning Optimization of Component Design

Various approaches have also been proposed for component design optimization. Fellini et al.

[28] provide an overview of various software design environments and optimization algorithms

for HEV design optimization. Kim and Peng [29] developed a combined power management and

design optimization framework and tested it for 3 different drive cycles. The vehicle simulation

was simplified to make it suitable for the computationally expensive optimization process. Assanis

1The Federal Test Procedure FTP75 is a drive cycle established by the United States Environmental Protection Agency
for emission testing.

2The New European Driving Cycle (NEDC) was designed to represent typical European city driving.
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et al. [30] optimized the fuel economy of an HEV in the ADVISOR environment using sequential

quadratic programming (SQP). The crucial relationship between accuracy and computation time

is discussed in this paper. Gao and Porandia [32] compared DIRECT, a genetic algorithm and

simulated annealing for optimizing a parallel hybrid electric power train design using a combined

FTP-75/HWFET3 drive cycle. Optimization times of more than 100 hours are reported caused

by the slow evaluation speed of PSAT4. Zhang et al. [31] proposed a multi-objective parameter

optimization for a series hybrid electric vehicle and tested it with a combined UDDS5 /HWFET drive

cycle. Liu et al. [34] developed a hybrid genetic algorithm for optimal component sizing and studied

its performance for the City-Hwy test procedure in the ADVISOR6 environment. Allison et al.

[26, 27, 4] studied the effect of optimal partitioning and decomposition-based design optimization

for complex engineering systems, such as HEVs. The goal is to achieve faster optimization times

while maintaining similar accuracy.

Increasing Computation Speed

Looking at the above references, it becomes clear that most EV optimization engineers face

similar challenges, which are very slow overall computation times and the resulting need for sim-

plifications. Software simulation is an integral part of system design optimization. Physical sim-

ulation of EV power trains is computationally expensive. The computation time for large-scale

design optimizations increases roughly proportionally to the number of simulations performed. For

multi-parameter optimizations the computation time quickly becomes infeasible since the number

of required simulations grows exponentially with the number of state variables. The following

measurements are identified from the cited references as possible solutions to reduce optimization

times:

1. Simplifying the objective function (system simulation):

• Minimizing the number of state variables reduces the dimensionality of the simulation.

• Replacing computationally expensive operations with approximation functions or look-

up tables saves processing time by substituting complex runtime computations with sim-

pler (array indexing) operations.

3The Highway Fuel Economy Cycle (HWFET) is a chassis dynamometer drive cycle developed by the United States
Environmental Protection Agency for the determination of fuel economy of light duty vehicles.

4PSAT is a Powertrain System Analysis Toolkit developed by the Argonnen National Laboratory.
5The Urban Dynamometer Driving Schedule is a dynamometer test on fuel economy that represents city driving

conditions. It was developed by the United States Environmental Protection Agency.
6ADVISOR is a Matlab-based Advanced Vehicle Simulator developed by the National Renewable Energy Laboratory.
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• Reducing the order of numerical ordinary differential equation (ODE) solvers decreases

the computation time.

• Increasing the simulation stepsize proportionally decreases the number of processor op-

erations, if the system is modeled in a discrete fashion.

The trade-off for all of the above measurements is a loss of accuracy.

2. Simplifying the objective:

• In case of a large input dataset, smaller representative inputs can be designed based

on the stochastic characteristics of the original set. For example, one average-assumed

drive cycle can be employed instead of an entire lifetime driving profile.

• For multi-objective optimization, reducing the number of objectives exponentially de-

creases the complexity of the optimization problem.

The trade-off for both measurements is the inability to account for all stochastic eventualities

(lifetime effects, uncertainties), and the resulting loss of accuracy and result variety.

3. Selecting the most suitable optimization algorithms and implementing a task-specific opti-

mization framework:

• Determining the optimal parameter setup for each specific problem improves the effi-

ciency of the optimization algorithm.

• System decomposition and partitioning are efficient tools to improve the optimization

time.

Besides an increased implementation effort, other trade-offs for the proposed measurements

are negligible.

There are two ways to improve the speed of a computer-based optimization process: Im-

proving the software or accelerating the computation hardware. We have seen that a variety of

options have been proposed in the literature for improving computation times in terms of software

modifications. On the other hand, very little has been reported on the effect of computation hard-

ware on the optimization time. The main scope of this dissertation is to investigate the potential

benefit of employing modern computation hardware for large-scale design optimizations.
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Figure 1.1. A schematic classification of mathematical optimization methods

(a) Iterative optimization routine

(b) Meta-heuristic optimization routine

Figure 1.2. Schematic diagram of a typical iterative and meta-heuristic optimization method

Sequential versus Parallel Computing for Optimization

To understand the importance of computation hardware on optimization algorithms, it is neces-

sary to look at how different algorithms utilize the hardware. Fig 1.1 illustrates a schematic classifi-

cation of mathematical optimization methods that can be employed in engineering optimization. On

the top level, there are derivative-based analytical algorithms and numerical algorithms. The latter

are traditionally used for non-linear problems that are too complex to determine an analytical solu-

tion. Numerical optimization is classified into finitely terminating algorithms, iterative or sequential

algorithms and meta-heuristic algorithms. A typical example of finitely terminating algorithms is

the simplex algorithm[76]. Examples of iterative algorithms are Newton’s method [78], sequential

quadratic programming [79], and gradient descent [77]. Finally, examples of meta-heuristic algo-



www.manaraa.com

Chapter 1 Introduction 6

Figure 1.3. Development of the processor clock speed since 1969. Since 2003, the clock speed has
not increased due to thermodynamic limitations.

rithms are genetic algorithms (GAs) [69, 70, 13], and simulated annealing (SA) [71, 72, 73] ant

colony optimization (ACO) [74, 75]. Most iterative algorithms are comparatively easy to imple-

ment and guarantee at least local convergence. The implementation of meta-heuristic algorithms is

somewhat more challenging. In most cases, neither global nor local convergence can be guaran-

teed. Fig. 1.2(a) illustrates the general principle of iterative optimization routines. The inherently

serial properties of the process are recognizable. Each new iteration depends on the results of the

previous iteration until convergence is achieved. Most meta-heuristic algorithm have a similar outer

setup. However, the key difference is that meta-heuristic algorithms are based on a set of pos-

sible solution candidates while iterative algorithms operate with just one candidate (Fig. 1.2(b)).

The computationally expensive evaluation of the candidate’s fitness can be parallelized for meta-

heuristic algorithms under normal circumstances. Furthermore, it is possible to program certain

operations of meta-heuristic optimization routines in parallel, such as parameter sorting.

Typically, design engineers have limited access to supercomputers and large-scale CPU

clusters. In addition, parallel implementations of system models and optimization routines are sig-

nificantly more challenging and time-consuming than sequential implementations. As a conse-

quence, most optimization algorithms used in engineering design are inherently sequential or are

meta-heuristc algorithms implemented in a serial fashion. However, inherently sequential opti-

mization algorithms are directly dependent on the clock speed of the CPU since they are single-

threaded. According to Moore’s Law, the number of transistors on integrated circuits doubles every

18-24months [68]. In the past, Moore’s Law had been linked to the clock speed of CPUs. How-

ever, the clock speed of CPUs has not been notably increased since 2003 due to thermodynamic
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limitations. The development of clock speed since 1969 is illustrated in Fig. 1.3. Nevertheless,

Moore’s Law is still valid as the transistor rate is still increasing through the integration of multi-

ple computation cores into a single processing unit. As a consequence of this development, modern

computation units will not become significantly faster in the future, but instead will feature increased

multi-threading capabilities. Therefore, inherently sequential optimization algorithms will not ben-

efit from future improvements in computation hardware, in fact, they have already peaked in terms

of hardware acceleration. On the other hand, meta-heuristic search algorithms are parallelizable

for the most part, allowing them to take full advantage of multi-threaded hardware. Optimization

engineers that adapt to this development will benefit from both drastically reduced computation

times and the ability to solve optimization problems found previously infeasible on conventional

architectures.

Potential of Graphics Processing Units

In recent years, the parallel computing architecture of graphic processing units (GPU) has evolved

more significantly than any other parallel processing architecture, such as modern multi-core CPUs.

GPUs have become increasingly parallel to accomplish advanced 3D graphic rendering techniques

for modern gaming software. In their beginning, GPUs were only programmable with special graph-

ics application programming interfaces (APIs). With the OpenGL7 API and Microsoft’s DirectX8

API, flexible higher level shader programming was made possible through the High-Level Shad-

ing Language (HLSL) and the OpenGL Shading Language (GLSL), respectively [82]. Shaders are

software instructions that were primarily used to calculate rendering effects on GPUs. HLSL was

designed for three types of shaders: vertex shaders, geometry shaders and pixel shaders. The par-

allalizable properties of shading explain the fast evolution of the parallel processing architecture

of GPUs. However, general purpose programming used to be very restricted since computations

had to be expressed in graphical terms like vertices, textures, fragments, and blending. In 2007,

the California-based company NVidia introduced CUDA (Compute Unified Device Architecture),

a parallel computing architecture, alongside with C for CUDA, a C-based API for GPU program-

ming. The extremely high floating point performance of consumer low-cost GPUs, together with

an improved programming interface, allows for the execution of scientific applications on desktop

computers [82]. Nowadays, modern GPUs are not only graphics engines, but also highly parallel

processors that significantly outpace CPUs for certain applications. Since most design engineers

7Open Graphics Library (OpenGL) is a cross-platform API for writing programs that produce computer graphics.
8DirectX is a collection of APIs for handling multimedia tasks, such as gaming and video.
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have no access to supercomputers, GPU computing is becoming a powerful and affordable alter-

native. The sequential part of the application runs on the CPU and the computationally-intensive

part is accelerated by the parallel GPU [81]. The hardware architecture of a modern GPU follows

a single instruction multiple data (SIMD) programming model. Ideally, a GPU processes many

threads in parallel for the same instructions. Due to the complex memory architecture of GPUs,

inter-thread communication is possible but not trivial to implement. The technique of using GPUs

to perform computations that are typically executed on CPUs is called general-purpose computing

on graphics processing units (GPGPU) [83, 84]. Researchers in various fields have reported signif-

icant computational speedups by employing GPGPU techniques. Thibault et al. [85] reported two

orders of magnitude of speedup relative to a serial CPU implementation of a Navier-Stokes solver

for incompressible flows on a multi-GPU desktop. Stivala et al. [86] achieved a 34x speedup over a

CPU implementation of a tableau-based protein substructure search with simulated annealing. Ko-

matitsch et al. [87] achieved a speedup of up to 20x over a reference CPU cluster for a high-order

finite-element application, which performed the numerical simulation of seismic wave propagation

on a large cluster of NVidia Tesla graphics cards. Geveler et al. [88] measured an eightfold speedup

using modern GPUs in contrast to multi-threaded CPU code for the simulation of laminar fluid flows

based on the two-dimensional shallow water equation and the Lattice-Blotzmann method. Other re-

search areas that have benefited from GPU computing include: data mining, computational finance,

medical imaging, and more.

Previous Work concerning Optimization on GPUs

Promising results of GA implementations on GPUs have also been achieved within the com-

puter science community. The research field is called Genetic Programming on General Purpose

Graphics Processing Units (GPGPGPU). So far, the majority of the publications focus solely on

the hardware-specific implementation of the algorithms and their performance compared to tradi-

tional CPU implementations. Harding et al. [89, 90] demonstrated that the use of GPUs accelerates

evolutionary computation applications by up to several hundred times over typical CPU implemen-

tation. Simple benchmark functions were used as fitness functions. Fok et al. [91] were able to

show speedups of up to 5x when they ported evolutionary programming to a GPU. The operators

of mutation, selection, and fitness calculation were fully implemented on their GPU. Harding and

Banzhaf [92] proved that splitting the program compilation, fitness case data, and fitness execution

over a cluster of GPU equipped computers further improves computation speeds. Pospichal et al.

[93] mapped a parallel island-based GA with unidirectional ring migrations to a CUDA software
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model. Tests were performed using Rosenbrocks, Griewanks and Michalewiczs benchmark func-

tions. The proposed approach led to speedups of up to seven thousand times higher compared to

one CPU thread. Furthermore, Pospichal et al. [95] showed that a consumer-level GPU can be

used to significantly speed up optimization of the Knapsack9 problems. Speedups of up to 1340x

were reported, however, Pospichal also elaborated on the limitations of GPU computing for evolu-

tionary computations. The main finding was that GPUs must be utilized with sufficient block and

thread sizes in order to overcome the disadvantage of memory latency. Sato et al. [94] demon-

strated the possibility of solving Sudoku puzzles on GPUs while achieving a practical processing

time. The achieved speedup was reported to be up 25x over a single-threaded CPU implementation

in C/C++ and up to 96x over a single-threaded Java implementation. Luong et al. [96] used the

GA island model to solve large-scale and time-intensive combinatorial optimization problems with

GPUs. Speedups of over 2000x were achieved in this study.

Scope of this Dissertation

Using GPGPGPU for a large-scale design optimization of full engineering systems such as EVs is

a novel approach. While it has been shown that GAs for simple benchmark functions can efficiently

be implemented on GPUs, parallel simulation of engineering systems as part of an objective func-

tion is a more challenging task. The scope of this research is to investigate the potential speedup

of performing a large-scale design optimization of a FCHEV on GPUs. For speed benchmark-

ing, a backward-looking system simulation is created in three different programming environments:

CUDA for GPU programming, the intermediate-level programming language C/C++, and the graph-

ical programming environment Matlab/Simulink. The CUDA code is then mapped into the fitness

function of a GPU-based GA optimization routine that is specifically designed for the optimization

of the FCHEV. The proposed optimization approach is mostly generic and can easily be employed

to other transient-state simulations of engineering systems with only minor modifications. The re-

sulting speedup of this novel implementation concept compared to the C/C++ and Matlab/Simulink

implementations is studied and utilized to improve conventional EV optimization methodologies.

As mentioned before, single-threaded CPU optimizations of EV systems are, in many cases, compu-

tationally infeasible without simplifications, resulting in a loss of accuracy and additional constraints

on the research scope. Fast GPU-based design optimization is not constrained by the multitude of

simplifications that are commonly used to avoid impracticable computation times on single-threaded

9The Knapsack problem is a problem in combinatorial optimization, which is often used as a benchmark problem.
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CPU systems. Thus, GPU-based design optimization provides new opportunities to study the opti-

mal system design of EVs and gain a thorough understanding of key design challenges.

Stochastic simplification of optimization input parameters has been identified as a preva-

lent procedure. It is common practice to use just one drive cycle, for example UDDS, which is

designed as a stochastic representation of an entire driving profile, as input data for the objective

function. Driving profiles are the collection of all drive cycles in the lifetime of a vehicle. Evi-

dently, performing a vehicle simulation for a driving profile (∼100,000-200,000km) is much more

computationally expensive than a simulation for just one drive cycle (∼10-100km). GPU-based

EV optimization allows for the utilization of entire driving profiles in the objective function, thus

enabling the extension of conventional optimization strategies with the following prospects:

1. Consideration of lifetime effects: Incorporating degradation effects into the simulation allows

for the accounting of the transient state of components, such as battery packs and fuel cell

stacks.

2. Consideration of parameter and model uncertainties: Driving profiles automatically account

for most variations of driving patterns. Parameter uncertainties can be represented by prob-

ability functions along with random number generators, since the driving profile simulation

space is large enough for an accurate stochastic representation.

3. Vehicle design individualization: Driving profiles can be individually created according to

the driving characteristics of a specific driver. The resulting optimization would provide the

optimal car for the needs of this driver.

4. Sensitivity studies: The effects of parameter sensitivities can be thoroughly investigated by

executing multiple optimization runs. Small changes of model parameters or input parameters

might have a considerable effect on the overall system design.

1.2 Dissertation Outline

Fig. 1.4 illustrates the outline of this dissertation. Chapter 1 introduces the scope of this

research. It presents an overview of previous work and discusses the motivation and contributions

of this dissertation. Chapter 2 describes the physics of the FCHEV model and its implementation

into three different programming environments. Chapter 3 proposes a novel methodology to gen-

erate stochastic drive cycles based on application and driver-specific driving profiles. Chapter 4
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Figure 1.4. Dissertation Outline

incorporates the vehicle model and drive cycle generation tool into a two-level optimization routine

which is specifically designed for GPUs. The performance of the proposed optimization method-

ology is evaluated and analyzed in Chapter 5.6. Results of various FCHEV optimization scenarios

are presented and discussed in Chapter 6. Chapter 7 summarizes this dissertation, emphasizes the

conclusions of this research, and proposes future work.
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Vehicle Model

A discrete backward-looking system simulation of a FCHEV is created in three different

programming environments: CUDA for GPU programming, C/C++, and Matlab/Simulink. Figure

2.1 illustrates the system architecture of the vehicle.

Drive Cycle Vehicle Dynamics

Duty Cycle

Regen. BrakingMotor

Discharged

Energy

Charging 

Energy

Energy Management

Fuel Cell System Battery

Battery Degradation

Fuel Consumption

SOC

Power

Demand

Power

Demand

Efficiency

Power

Demand

Max

Capacity

Figure 2.1. System architecture and EMS setup of FCHEV model consisting of fuel cell stack
and battery pack as energy buffer. The model incorporates the effects of regenerative brake energy
recovery and battery degradation.

A drive cycle is the input to the model. Drive cycles are represented as an array of vehicle

speed data and possibly elevation data for each discrete timestep. The vehicle dynamics model

converts the drive cycle into a duty cycle considering the physical properties of the vehicle. Duty

12
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Parameter Notation Value

Base vehicle weight 1 mbw 500kg

Fuel cell type − PEMFC

Battery type − Lithium-Ion

Brake recuperation efficiency µbtr 30%

Timestep size ts 0.2s

Drag coefficient cd 0.26

Tire rolling resistance µ 0.013

Front area Afront 2m2

Active area of fuel cell Afc 200cm2

Fuel cell membrane thickness dm 1.25mm

Water content of membrane λm 14 (≡100%)

Table 2.1. Specifications of the FCHEV system model

cycles are arrays of vehicle power demand data, consisting of one data point for each discrete

timestep. The vehicle is powered by a proton exchange membrane fuel cell (PEMFC) stack and a

lithium-ion battery pack as an energy buffer. The battery pack is either charged by excess energy

provided from the fuel cell stack or by regenerative braking with a recuperation efficiency of 30%.

A component degradation model keeps track of the battery utilization and computes the resulting

loss of capacity while the energy management controller (EMC) manages the power flows between

the two power sources. A detailed description of the EMC can be found in Section 2.5 and Table 2.1

provides specifications for the vehicle. Each system component is seperately modeled obeying the

principles of conservation: mass, momentum, species, charge and thermal energy. The component

models are then interconnected to create the overall system simulation.

2.1 Vehicle Dynamics Model

The power demand of the vehicle is estimated by a vehicle dynamics model. The model

calculates the incremental change in position of the vehicle and the external forces for each iteration

of the simulation. The external forces are inertia force for acceleration (Facc), projected normal

force (Fgrav), rolling resistance (Froll) and aerodynamic drag (Fdrag) [33].

1Vehicle weight without fuel cell system, battery pack and motor
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Facc(t) = m · a(t) (2.1.1)

Fgrav(t) = m · g · sin (θ(t)) (2.1.2)

Froll(t) = µ ·m · g · cos (θ(t)) (2.1.3)

Fdrag(t) =
1

2
· ρair · v(t)2 · cd · Afront (2.1.4)

Ftotal(t) = Facc(t) + Fgrav(t) + Froll(t) + Fdrag(t) (2.1.5)

Here, m is the vehicle mass, a is the acceleration, g is the gravitational acceleration, θ is the road

angle, µ is the rolling resistance coefficient, ρair is the density of air, v is the velocity of the vehicle,

cd is the drag coefficient and Afront is the vehicle’s front area. The total force Ftotal on the vehicle

is the sum of all external forces. In a discrete notation, Eqn. 2.1.1-2.1.5 can be expressed as:

Faccn = m · vn − vn−1

ts
(2.1.6)

Fgravn = m · g · sin
(

arctan
hn − hn−1

ts · vn

)

, vn 6= 0 (2.1.7)

Frolln = µ ·m · g · cos
(

arctan
hn − hn−1

ts · vn

)

, vn 6= 0 (2.1.8)

Fdragn =
1

2
· ρair · v2n · cd · Afront (2.1.9)

Ftotaln = Faccn + Fgravn + Frolln + Fdragn (2.1.10)

where h is the elevation of the vehicle. Due to analytical restrictions, vn = 0 has to be replaced

with vn → 0+. The overall power demand is obtained with:

Ptotaln = Ftotaln · vn (2.1.11)

2.1.1 Component Weight Functions

The hypothetical component weight functions of the motor mmt, fuel cell system mfc

and battery pack mbt are illustrated in Fig. 2.2 and represented by the following equations:

mmt = (−0.007756 · |Pmax|2 + 5.6 · |Pmax|+ 26.88)kg (2.1.12)

mfc = (80 + nfc/2)kg (2.1.13)

mbt = (50 + Cmax/200)kg (2.1.14)

The overall vehicle weight is computed as:

m = mbw +mmt +mfc +mbt (2.1.15)
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Figure 2.2. Hypothetical component weight functions of motor, fuel cell system, and battery pack.

2.2 Fuel Cell Stack Model

Fuel cells convert chemical energy contained in a fuel, such as hydrogen, into electrical

energy. A typical fuel cell consists of an anode and a cathode on either side, and an electrolyte

membrane in between. A schematic block diagram of a fuel cell illustrating gas and ion flow di-

rections is shown in Fig. 2.3 [49]. Hydrogen is continuously fed to the andode and oxygen to the

cathode while electrons are drawn from the anode side and transported to the cathode side through

an external circuit, thus performing work on the load. The overall reaction in a hydrogen/oxygen

fuel cell can be written as:

H2(g) +
1

2
O2(g) → H2O(l) (2.2.1)

Figure 2.3. Block diagram of a fuel cell
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2.2.1 Cell Voltage Model

The fuel cell voltage is computed as a function of pressure, temperature, reactant partial

pressure, and relative humidity [43, 44, 45, 46, 47, 48, 49]. The maximum potential of a fuel cell

can be obtained from the Gibbs free energy. The change in Gibbs free energy (∆G) is the maximum

obtainable work (Wel) from an electrochemical reaction at a constant temperature and pressure.

Wel = ∆G = −nFE (2.2.2)

It can also be expressed as:

∆G = ∆G◦ +RT ln

(

fγ
Cf

δ
D

fα
Af

β
B

)

(2.2.3)

where n is the number of electrons per reacting ion or molecule, F is Faraday’s constant (96,485

C/mol), E is the ideal electrode potential, ∆G◦ is the Gibbs free energy change of the reaction at

standard pressure, R is the gas constant (8.3144 J/mol K), T is the temperature in Kelvin scale, and

fi is the fugacity of species i. Combining equations 2.2.2 and 2.2.3 leads to the Nernst equation:

E = E◦ +
RT

nF
ln

(

fγ
Cf

δ
D

fα
Af

β
B

)

(2.2.4)

Since PEMFCs typically operate at low pressures, the fugacity can be approximated by partial

pressures.

E = E◦ − RT

nF
ln

(
pH2O

pH2

√
pO2

)

(2.2.5)

The standard state defines a standard state reference potential E0
0 , which is equal to 1.229V at

298.15K and 1atm. E0 varies from the standard state reference in accordance with temperature [49]

using:

E0 = E0
0 + (T − T0)

(
∆S0

nF

)

(2.2.6)

with E0 = β1 + β2T , β1 = 1.229V − 298.15·∆S0
0

nF
, β2 =

∆S0
0

nF

where T0 is the standard temperature (298.15K) and S0 is the standard molar entropy. The entropy

change of a given reaction is approximately constant and can be set to the standard state value.

According to Amphlett et al. [44], using literature values for the standard-state entropy change, the

Nernst equation for a fuel cell can now be formulated as:

E = 1.229 − 0.85 · 10−3 · (T − 298.15) + 4.3085 · 10−5 · T
[

ln pH2 +
1

2
ln pO2

]

(2.2.7)
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Voltage Losses

Several voltage losses occur in a fuel cell due to the combined effects of thermodynamics,

mass transport, kinetics, and ohmic resistance. These physical and chemical factors determine the

output voltage of the cell. The three major losses of a fuel cell are:

• Activation Overvoltage Loss or Activation Loss vact

• Ohmic Resistance Loss or Ohmic Loss vohm

• Concentration Loss vconc

Activation Loss Activation losses are caused by dissociation and ionization of gases in

the electrodes. The activation overvoltage occurs at the anode as well as at the cathode, however, the

anode loss can be neglected since it is very rapid. The relation between the activation overvoltage

vact and the current density is described by the Tafel equations [48]

vact = a · ln i

i0
(2.2.8)

where a is a constant and i0 is the exchange current density. Since the Tafel equation is only valid

for i > i0, equation 2.2.8 can be approximated by the following equation for use in the fuel cell

model [46].

vact = v0 + va(1− e−c1i) (2.2.9)

where v0 is the voltage drop at zero current density and va and c1 are constants (see Appendix A).

Ohmic Loss The ohmic loss is caused by the resistance to the flow of ions in the

membrane and the resistance to the flow of electrons through the electrodes. The voltage drop is

proportional to the stack current

vohm = i · Rohm (2.2.10)

with

Rohm =
tm
σm

(2.2.11)

tm is the thickness of the electrolyte membrane and σm is the membrane conductivity. According to

Springer et al. [45], the membrane conductivity can be approximated with the following equation:

σm = (b1λm − b2) exp

(

b3

(
1

303
− 1

Tfc

))

(2.2.12)

where b1, b2 and b3 are constants that have to be adjusted to fit the fuel cell data. The value of λm

can vary between 0 (=0%) and 14 (=100%).
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Concentration Loss Concentration losses or mass transport losses are caused from

the change in concentration of the reactants as they are consumed in the reaction. Concentration

losses are the reason for the rapid voltage drop at high current density and can be obtained with the

following relationship:

vconc =
RT

2F
ln

(

1− i

il

)

(2.2.13)

il is a limiting current density at which the fuel is used up at a rate equal to its maximum supply rate

[48]. Concentration losses are often ignored in fuel cell models since it is not desirable to operate

the stack in regions where the concentration losses are very high.

2.2.2 Stack Model

The fuel cell operating voltage vfc can be obtained by subtracting the voltage losses de-

scribed in Section 2.2.1 from the open circuit voltage descirbed by Eqn. 2.2.7.

vfc = E − vact − vohm − vconc (2.2.14)

The overall stack voltage vst is then obtained as the sum of the individual cell voltages:

vst =

nfc∑

i=1

vfcn (2.2.15)

If all cells are identical, Eqn. 2.2.15 can be simplified to become:

vst = nfc · vfc (2.2.16)

where vst is the number of fuel cells in the stack. The stack current Ist is equal to the cell current

Ifc. The current density is defined as the stack current per unit of cell active area:

ifc =
Ist
Afc

(2.2.17)

The hydrogen consumption rateṁH2 is a function of the stack current using

ṁH2 = MH2 ·
nfcIst
2F

(2.2.18)

The overall hydrogen consumption for one drive cycle mH2 is the integral of the hydrogen con-

sumption rate over the duration of the drive cycle tDC .

mH2 =

∫ t=tDC

t=0
ṁH2(t)dt (2.2.19)
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In the FCHEV model, the overall fuel consumption for a drive cycle is obtained by converting the

above equations to a discretized form. Using Pfc as the power demand to the fuel cell stack, the

equations become:

ifcn =
Pfcn

vfcn−1Afc
(2.2.20)

vfcn = En − vactn − vohmn
− vconcn (2.2.21)

∆mfcn = mfcn −mfcn−1 = MH2 ·
nfc

2F
· Pfcn

vfcn
· ts (2.2.22)

mH2 =

k=
tDC
ts∑

n=0

∆mfcn (2.2.23)

2.3 Battery Model

A simple controlled voltage source in series with a constant resistance is used to model the

lithium-ion battery. The actual state-of-charge (SOC) of the battery is the only state variable used

to calculate the open source voltage with a non-linear equation. The following equations describes

the battery voltage for charging:

vbt = E0 −Rint · ibt −K
Q

Q−Qc
i∗ −K

Q

Q−Qc
Qc +A · e−B·Qc (2.3.1)

and for discharging:

vbt = E0 −Rint · ibt −K
Q

Qc − 0.1 ·Qi∗ −K
Q

Q−Qc
Qc +A · e−B·Qc (2.3.2)

where E0 is the battery constant voltage, K is a polarization constant, i∗ is the filtered current, ibt

is the battery current, Qc is the actual battery charge, Q is the battery capacity, Rint is the internal

resistance, A is an exponential voltage, and B is an exponential capacity. A detailed description of

the model can be found in references [50, 51].

The battery current is obtained from the power demand towards the battery Pbt and the

battery voltage.

ibt =
Pbt

vbt
(2.3.3)

The actual battery charge can be computed in a discretized form as follows:

Qcn = Qcn−1 + ibt · ts (2.3.4)

The filtered current is approximated by:

i∗n = (Ibt − i∗n−1) · (1− e−0.2·ts) + i∗n−1 (2.3.5)
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Parameter Unit Value

Battery constant voltage E0 [V] 3.366

Internal Resistance R [Ω] 0.01

Polarization constant K [Ω] 0.0076

Exponential voltage constant A [V ] 0.26422

Exponential capacity constant B [ 1
Ah

] 26.5487

Table 2.2. Battery Parameters

Figure 2.4. Hypothetical life-cycle curve of the lithium-ion battery pack for full charging cycles.

The battery SOC is defined as:

SOC =
Qc

Q
· 100 [%] (2.3.6)

The battery cell model is scaled up to pack level for the FCHEV simulation. Table 2.2 provides the

specification parameters for the battery model.

2.3.1 Battery Degradation

Degradation of lithium-ion batteries is a complex process which depends on a large num-

ber of factors, such as depth of discharge, charge and discharge rates, temperature, etc. Various

cycle life models have been published [52, 32, 54, 55, 59, 61, 65, 64, 63, 62]. However, the load on

HEV battery packs compared to conventional battery testing methodologies distinguishes itself by

dynamic, and rather short periods of charging and discharging caused by quick driving maneuvers

and recuperative braking. There seems to be a lack of dynamic degradation models in the literature.
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To simplify matters, a basic degradation model that is solely dependent on the energy usage of the

battery pack is employed in this study. It can be easily replaced by more complex and accurate

models when they areavailable. The proposed model is based on the hypothetical cycle life curve

shown in Fig. 2.4. The cycle life curve is represented by a function C(n), where n is the number of

full charge-discharge cycles and C(n) is the percent capacity of the battery with regard to the initial

capacity. For the degradation model, n is obtained as

n =

∫ t

0 P
+
bat(t)

Ebatmax

(2.3.7)

P+
bat is the discharging power demand to the battery, t is the overall utilization time of the battery,

and Ebatmax
is the maximum energy content of the battery, which is assumed to be constant in this

study.

2.4 Motor Efficiency

Figure 2.5. 3D Lookup table of the motor efficiency as a function of maximum rated power and
power demand as a percentage of maximum rated load.

Electric motors are most efficiently operated at 50-100% of their rated load with the maxi-

mum efficiency usually close to 75%. Due to increased iron, stray, and mechanical losses, the motor

efficiency rapidly drops if the motor is operated below 50% rated load. Fig. 2.5 illustrates a typical

motor efficiency curve. The motor efficiency is ploted as a function of maximum rated power and
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power demand as percentage of the maximum rated load. An analytic approximation of the pictured

curve is implemented in the vehicle model.

2.5 Energy Management

Figure 2.6. Energy Management Strategy for the FCHEV. The EMC leverages the SOC and power
demand according to a precalculated driving scenario.

The main task of an energy management controller is to provide a near-optimal power

split between the power sources in order to minimize fuel consumption. Since the proposed EMC

is incorporated in an optimization routine of a backward-looking vehicle simulation, it needs to

fulfill further requirements: First, the tuning of the EMC towards specific drive cycles should be

performed using a limited number of controller parameters. Furthermore, the controller parameters

should be easily optimizable towards the objective. A fast convergence time is desirable for the

parameter optimization since it exponentially affects the overall optimization time of the vehicle

(see Chapter 4).
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A predictive two-parameter EMC is implemented in the FCHEV simulation. Fig. 2.6

illustrates the setup and functioning of the controller design. The controller uses preliminary driving

data, such as GPS, terrain, and traffic data to generate an approximation of the expected drive cycle

before operating the vehicle. The vehicle dynamics model utilizes this data to estimate the average

power demand of the vehicle during driving scenarios. The average demand is then used as a

baseline power demand for the fuel cell stack. The EMC employs two linear controller parameters.

The first parameter α1 levels the error between the average target SOC of a time period γ and the

actual SOC of the battery pack. This can be viewed as a penalty function. The farther actual state is

from the desired state, the stronger the impulse to reach the desired state. The second parameter α2

adjusts the power demand approximation of the vehicle dynamics model (meta-model). The power

demand adjustments are formulated as follows:

Pd(t) = [∆SOC(t, γ)× (α1 + 1)]× (α2 × P ∗

d (t)) (2.5.1)

with

∆SOC(t, γ) = SOCa(t, γ)− SOCd(t) (2.5.2)

SOCa(t, γ) =
1

γ

∫ t∗

γ

SOCa(t)dt (2.5.3)

Pd(t) is the actual power demand, P ∗

d (t) is the predicted power-demand by the meta-model, SOCd(t)

is the target state-of-charge, and SOCa(t, γ) is the actual state-of-charge of the battery pack. A

value of γ=20 seconds has proven to be a good trade-off between not overstressing the dynamic ca-

pabilities of the fuel cell stack and achieving maximum fuel efficiency. SOCd(t) is set to a constant

value of 50% in this study. The optimal controller parameters for each drive cycle are determined

using an GA optimization routine. The GA finds the optimal controller settings that minimize the

overall fuel consumption while maintaining a constant average SOC.

Since the proposed vehicle model is backward-looking and the entire simulation drive

cycle is known in advance, the vehicle dynamics model can determine an accurate duty cycle before

the execution of the actual simulation. This facilitates an increase in accuracy and a decrease in

optimization time of the controller. References [36, 37] prove the applicability of the proposed

concept to real-world driving scenarios. A radial basis neural network is used to determine the

optimal controller parameters according to preliminary drive cycle data. The advantage of this

approach is the fast execution time of neural networks compared to numerical optimization methods.

Hence, the EMC is almost instantaneously operational while maintaining a very high degree of

accuracy.
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2.6 Programming Environments

The discrete FCHEV model is coded in three programming environments (CUDA, C/C++

and Matlab/Simulink) for speed benchmarking purposes.

2.6.1 CUDA

Algorithm 2.1 CUDA: n-parallel FCHEV simulations for 1 drive cycle
HOST:

init threadsize, blocksize

n = threadsize × blocksize

init DriveCycle, DesignParameter, Results, InitialConditions

cudaMalloc DriveCycle, DesignParameter, Results, InitialConditions

cudaMemcpyHostToDevice DriveCycle, DesignParameter, Results, InitialConditions

kernel <<blocksize, threadsize>> DriveCycle, DesignParameter, Results, InitialConditions

DEVICE:

init ModelParameter

for i = 1 → DriveCycleLength do

VehicleDynamicsModel

if i = DriveCycleLength then

return AveragePowerDemand

end if

end for

for i = 1 → DriveCycleLength do

VehicleDynamicsModel → EnergyManagementController → FuelCellModel → BatteryModel → Degradation-

Model

if i = DriveCycleLength then

return Results, InitialConditions

end if

end for

HOST:

cudaMemcpyDeviceToHost Results, InitialConditions

C for CUDA is a high-level programming language based on C/C++, which facilitates

co-processing on the CPU (host) and GPU (device). The entire vehicle simulation is embedded

in a CUDA kernel. Drive cycle array data and design parameters are entirely mapped from the

host memory to the shared memory of the GPU device, and constant variables are initialized on

the device. Crucial state variables are also ported into the fast register memory of the GPU’s mul-

tiprocessors. As a result, the FCHEV simulation for a full drive cycle is entirely executed on the
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GPU, thus avoiding the large latency in CPU-GPU communication. Host-device memory transfer is

usually the bottleneck for many GPU applications. To optimize performance, the simulation routine

is therefore limited to one data transfer at the beginning of the simulation and one transfer at the end

of the simulation.

Algorithm 2.1 illustrates the pseudocode of n-parallel CUDA simulations performed for

one drive cycle. Drive cycle data and design parameters are initialized on the host and then allocated

and transfered to the device memory. A kernel call starts the FCHEV simulation on the device. First,

the vehicle dynamics model is executed to determine the average power demand for each driving

scenario (see Section 2.5). Following this, the entire FCHEV simulation is performed utilizing the

prior results to determine the optimal energy management configuration. The simulation results are

then copied back and evaluated on the host.

2.6.2 C/C++

Algorithm 2.2 C/C++: 1 FCHEV simulations for 1 drive cycle
init DriveCycle, DesignParameter, Results, InitialConditions, ModelParameter

for i = 1 → DriveCycleLength do

VehicleDynamicsModel

if i = DriveCycleLength then

return AveragePowerDemand

end if

end for

for i = 1 → DriveCycleLength do

VehicleDynamicsModel → EnergyManagementController → FuelCellModel → BatteryModel → Degradation-

Model

if i = DriveCycleLength then

return Results, InitialConditions

end if

end for

Since the CUDA API is based on the C/C++ API, the structures of the CUDA code (Sec-

tion 2.6.1) and the implemented C/C++ code are very similar. Algorithm 2.2 shows the pseudocode

for one simulation performed on one CPU core. After the initialization of all parameters, the vehi-

cle model routine is called to determine the average power demand for each driving scenario. The

full FCHEV model is then executed and results are returned. The C/C++ implementation does not

require advanced memory allocations and data transfers, since the CPU memory model is compara-
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Figure 2.7. Simulink block diagram of the FCHEV model

tively simple. On the down side, the CPU routine is strictly sequential and does not provide parallel

processing capabilities.

2.6.3 Matlab/Simulink

Simulink is a graphical multi-domain simulation and modeling tool for dynamic systems

developed by the MathWorks corporation. To assure fair benchmarking, the FCHEV model is kept

as simple and fast as possible. The model structure and math operations are analogically modeled

after the CUDA and C/C++ routine. Time-consuming plotting and memory storage tools, as well

as expensive Simulink library functions are not utilized. The Simulink-extension, Stateflow, is used

as an environment for the EMC. Drive cycle data is loaded from an array in the Matlab workspace,

and the simulation results are written to the workspace at the end of the simulation. The model

and equation solvers are set as discrete using a fixed timestep-size of 0.2s. Fig. 2.7 illustrates the

component interaction and data utilization of the FCHEV model in the Simulink environment.
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Drive Cycle Generation

Most of the proposed power management optimization methodologies and nearly all of

the component design optimization methodologies presented in Section 1.1 share the fact that they

use only one drive cycle in their objective function. This is a significant simplification from the ideal

objective of evaluating a vehicle simulation for the entire lifetime of a vehicle. Instead, a smaller

time range with compressed driving characteristics is used as input data. Sciaretta and Guzzella

[35] stated that the achievable improvement in fuel efficiency depends strongly on the particular

HEV system as well as on driving conditions. Control parameters that perform well under one

set of conditions may lead to poor behavior under another. Hence, Sciaretta suggested adopting

meaningful objective functions.

Evidently, this argument is also applicable to component design parameters. To conclude,

HEV design parameters that are optimized for just one average-assumed drive cycle are not nec-

essarily optimal for other drive cycles or the entire driving profile, which is the collectivity of all

drive cycles in the lifetime of a vehicle. Single-cycle optimization might lead to so-called cycle

beating: The optimized system design might be ideal for the given cycle, but may be suboptimal

or not robust for other cycles. Further weaknesses of single-cycle optimizations include the neglect

of deviations in driving patterns and life-time effects such as component degradation. On the other

hand, the advantages are simplicity and lower requirements for computational resources.

Several methodologies to generate drive cycles have been published in the literature, most

of them in the context of emission testing. Austin et al. [38] proposed to construct drive cycles by

chaining categorized microtrips, which are defined as the driving activity between adjacent stops,

including the leading period of idle. These microtrips are selected from observed data with the

goal that the created cycle closely matches the characteristics of the data. Lin and Niemeier [39]

criticize Austin’s approach as lacking robustness and not reflecting of the stochastic nature of the

27
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data. Thus, Lin and Niemeier suggested a mode-based cycle construction method, in which real

world driving is viewed as a sequence of acceleration, deceleration, cruise, or idle modes. Markov

process theory is used to describe the stochastic process. Tazelaar et al. [40] also created a method

that generates drive cycles by resembling the characteristics of one original drive cycle in terms of

frequency spectra and speed distribution.

The drive cycle generation tool (DCGT) proposed in this dissertation distinguishes itself

from the above methods by operating entirely non-deterministically in terms of data. It does not

use a database of recorded data or data snippets that are combined to form a cycle, rather all key

parameters of a drive cycle are described stochastically with a probability density function. Drive

cycles are created in a modular fashion by assigning stochastically-determined values to each key

parameter. The modules are then assembled to form a drive cycle according to predetermined rules.

Hence, the DCGT offers the following advantages that are essential for stochastic optimization:

• It is capable of producing an unlimited amount of drive cycles

• stochastic parameters can either be determined from observed data or be manually adjusted

• It generates driving profiles that represent stochastic nature of observed data

• It generates driving profiles that represent load profiles on the power train (duty cycle)

This section presents a new methodology to generate drive cycles for stochastic optimiza-

tion. It is shown that DCGT generated drive cycles are comparable to recorded driving profiles in

terms of frequency spectra, speed distribution, acceleration distribution and load characteristics of

their corresponding duty cycles. Furthermore, the advantages of using the DCGT for stochastic op-

timization are investigated for a fuel cell powered HEV. Including life-time component effects, such

as degradation and uncertainties of driving patterns, leads to improved and more comprehensive op-

timal solutions when compared to conventional single-cycle optimization methods. The proposed

approach guarantees stable system operation throughout the simulation and for all scenarios of the

driving profile.

Various terminologies are used in the literature in the context of this topic, as pointed out

by Liaw and Dubarry [41]. Table 3.1 contains the definitions for terms used in this paper as well as

alternative terminologies from the literature.
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Table 3.1. Definition of the terminologies used in this study and alternative terminologies used in
the literature.

Terminolgy Alternative Terminologies Definition

Drive Cycle Driving Cycle Set of data points representing

vehicle speed versus time.

Duty Cycle - Set of data points representing

power demand versus time.

Driving Pattern - Characteristics of a drive cycle influenced

by internal and external factors such

as the environment and driving behavior.

Driving Profile Driving Cycle Profile Collectivity of all drive cycles

in the lifetime of a vehicle.

Driving Scenario Driving Event Subsection of a drive cycle distinguished

by similar topographic environments,

for example highway driving or urban

driving.

Driving Pulse Trip Snippet, Microtrip Subsection of a drive cycle consisting

of all data points between two idle

periods.

3.1 Modular stochastic drive cycle generation

Driving profiles are dependent on a large set of properties such as topography, traffic, lo-

cation, driving characteristics of the operator, and the environment. These dependencies generate

immense complexity, which makes it virtually impossible to model each feature of a driving profile

in a stochastic manner. Hence, some simplifying assumptions are required. The parameters pre-

sented in Table 3.2 were identified as the most crucial for describing the characteristics of a driving

profile. Moreover, they are sufficient for the purpose of this study.

3.1.1 Drive Cycle

The DCGT methodology is based on a nested modularity concept, as illustrated in Fig.

3.1. The most outer module (module 1) is the DC itself. The drive cycle duration tDC and its
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Table 3.2. DCGT key parameters and their notations. DC: Drive Cycle, DS: Driving Scenario, VN:
Velocity Noise.

Parameter Notation Prob. Fcn Unit

(fcn of) (fcn of)

Driving scenario DS pDSocc(DS) string

DC duration tDC({DSn}) pDCt(DS) s

DS duration tDS(DS) pDSt(DS) s

Acceleration a(DS) pa(DS) ms−2

Deceleration d(DS) pd(DS) ms−2

Cruising speed vCR(DS) pv(DS) ms−1

Cruising duration tCR(DS) pCRt(DS) s

Idle duration tID(DS) pIDt(DS) s

Velocity noise VN(DS) pV Nocc(DS) string

VN amplitude An(DS) pAn(DS) ms−1

VN frequency ωn(DS) pωn(DS) (rad)s−1

VN phase ϕn(DS) pϕn(DS) s

probability function pDCt(DS) are dependent on the DS categories (module 2) that are selected

for the cycle. Overall, drive cycles consist of the following modules: driving scenarios (module

2), driving pulses (module 3) and pulse modules (module 4), which consist of acceleration, cruise,

deceleration, idle, and velocity noise.

3.1.2 Driving Scenario

Driving scenarios are classified into five categories as proposed by [41]:

1. Stop-and-Go (SNG)

2. Urban (URB)

3. Suburban (SUB)

4. Rural (RUR)

5. Highway (HIG)
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Figure 3.1. Graphical illustration of the 4-level nested modularity concept of the DCGT

The classification is intuitive. While URB, SUB, RUR and HIG are selected according

to street topology, SNG can occur in any of these topologies during heavy traffic congestion. An

occurrence probability pDSocc(DS) is assigned to each driving scenario, with

5∑

i=1

pDSocc(DSi) = 100% (3.1.1)

The duration of one scenario is tDS and the duration probability is pDSt(DS). The DCGT

repeatedly generates driving scenarios until the following criteria is met:

n∑

i=1

tiDS >= tDC (3.1.2)

3.1.3 Driving Pulse

A driving pulse (DP) consists of an initial acceleration phase, a cruising period, a deceler-

ation phase, and an idle period as shown in Fig. 3.2. A typical driving pulse in an urban environment

could be a trip from a traffic light to a stop sign, for example. The DP duration tDP is determined

using the following equation:
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Figure 3.2. Partitioning of an urban driving pulse into four pulse modules (acceleration phase,
cruising period and deceleration phase)

tDP =
vt=0
CR

a(DS)
+ tCR(DS) +

v
t=tCR(DS)
CR

−d(DS)
+ tID(DS) (3.1.3)

vt=0
CR and v

t=tCR(DS)
CR are the vehicle speed at the beginning and at the end of the cruising phase,

respectively. Typically, tDP is very short for SNG traffic in a busy urban environment, and on the

other extreme, very long for highway driving. The DCGT generates DPs until their accumulated

duration is larger than the duration of the DS as defined by:

n∑

i=1

tiDP >= tDS (3.1.4)

3.1.4 Pulse Modules

For simplification, acceleration and deceleration are assumed to be linear. An acceleration

period ends when cruising speed is reached, and a deceleration period ends when the vehicle idles.

Velocity noise

As mentioned before, drive cycles are influenced by a large number of internal and exter-

nal parameters. The vehicle speed during a cruising period fluctuates to a greater or lesser extent

depending on these parameters. These speed fluctuations during a cruising period are referred to

as velocity noise, and are viewed as a superposition of oscillations in this study. The advantage of

this approach is that the velocity noise can be fully parameterized. It is then possible to obtain the
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Figure 3.3. DCGT frequency decomposition methodology applied to driving data recorded on Interstate Highway H-1 in Hawaii, USA: (a)
recorded data (dashed line) and average speed of recorded data (solid line), (b) velocity noise defined as speed over time minus average
speed (dashed line) and its low frequency domain (solid line), (c) velocity noise minus low frequency domain (dashed line) and its medium
frequency domain for 100s intervals (solid line), (d) velocity noise minus low and medium frequency domain (dashed line) and its high
frequency domain for 100s intervals (dashed line), (e) recorded data (dashed line) and the sum of low, medium and high frequency domains
plus average speed (solid line).
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parameters and their probability functions from the data or adjust them manually. Velocity noise

oscillations are categorized into three groups:

• Low Frequency (LF) Noise (0-0.01Hz):

caused by terrain topology, traffic congestion, speed limits, construction areas, etc.

• Medium Frequency (MF) Noise (0.01-0.25Hz):

caused by road topology, traffic flow, driving characteristics, etc.

• High Frequency (HF) Noise (0.25-0.5Hz):

caused by road condition, lane switches, rapid driving maneuvers, spontaneous reactions, etc.

The oscillations for each frequency spectrum (FS) are modeled as a sum of three sinu-

soidal functions:

yFS(t) =

3∑

i=1

(Ai
FS · sin(ωi

FSt+ ϕi
FS)) (3.1.5)

Non-linear least square regression (NLLSR) is used to determine the amplitudes Ai
FS , the

frequencies ωi
FS and the phase ϕi

FS for each FS from recorded driving data [66]. The optimization

problem for the regression can be stated as:

min
t
||yFS||22 = min

t
(y2FS,1 + y2FS,2 + ...+ y2FS,m) (3.1.6)

with

yFS,1 = f(t1;A
i
FS , ω

i
FS , ϕ

i
FS)

...
...

yFS,m = f(tm;Ai
FS, ω

i
FS , ϕ

i
FS)

where m is the number of timesteps of a discrete DC. Initial guesses are picked for the unknown

parameters and the following equation is defined:

∆βj = yFS,j − f(tj;A
i
FS , ω

i
FS, ϕ

i
FS) (3.1.7)

Linear estimates for the parameter changes ∆Ai
FS , ∆ωi

FS , and ∆ϕi
FS needed to reduce

∆βj to 0 are obtained using:
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∆βj =

(
3∑

k=1

(
∂f

∂Ak
FS

∆Ak
FS +

∂f

∂ωk
FS

ωk
FS+

∂f

∂ϕk
FS

ϕk
FS

)) ∣
∣
∣
∣
tk ,(AFS ,ωFS ,ϕFS)

(3.1.8)

for j=1,..,3. Eqn. 3.1.8 can be written in concise matrix form as

∆β = M∆λ (3.1.9)

where M is a m×9 matrix and λ = {Ai
FS , ω

i
FS, ϕ

i
FS}. Eqn. 3.1.9 can now be solved for

the offset ∆λ. λ+∆λ results to a new ∆β. The process is iteratively repeated until a convergence

criteria is met.

The regression is executed for all driving scenarios as illustrated in Fig. 3.3, in which

the approach is performed for highway driving data recorded on Interstate Highway H-1 in Hawaii,

USA. The first step is to isolate the velocity noise from the cruising period by subtracting the aver-

age speed (Fig. 3.3(a)). Next, the low frequency noise is identified using NLLSR and subsequently

separated from the velocity noise (Fig. 3.3(b)). For the following steps, the remainder of the ve-

locity noise is partitioned into segments of equal duration (100s). The regression parameters of the

medium frequency noise are then determined for each segment and the medium frequency noise is

filtered from the remainder of the velocity noise (Fig. 3.3(c)). The same procedure is executed once

again to identify and filter the high frequency noise (Fig. 3.3(d)). Fig. 3.3(e) shows the original

data set versus the velocity noise modeled with Eqn. 3.1.5 using the obtained parameters. The latter

closely resembles the orginal curve.

3.1.5 Probability Functions

A probability function (or probability density function) is assigned to each parameter that

is used to describe the driving profile. Most probability functions are two-dimensional; however,

they can also be multi-dimensional if they are dependent on multiple parameters. Probability func-

tions are derived by interpolating data from the driving profile analysis. The probability function

is then adjusted for the use of a uniform random number generator for the range [0,1]. Fig. 3.4

illustrates this approach for the acceleration parameter in an urban environment. Data of 100 accel-

eration periods, which was collected during urban driving in Honolulu, Hawaii, is categorized into

an arbitrary number of bins. 10 bins are used in this example. NLLSR is used to fit the data to the

following equation, assuming that the data has Gaussian characteristics:
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Figure 3.4. (a) Summation of Gaussian distributions fitted to a histogram of 100 urban accelerations,
(b) cumulative probability distribution derived from the Gaussian distribution and adapted for a
uniform random number generator

f(x;αn, σn, µn) =
n∑

i=1

[

αi

σi
√
2π

e

(

−
(x−µi)

2

2σ2
i

)]

(3.1.10)

where α is a scaling factor, σ2 is the variance, µ is the mean and n is the number of overlapping

Gaussian distributions. n = 2 is chosen in Fig. 3.4(a). Next, the cumulative distribution function

Φ(x), which describes the probability of a random variable in (−∞, x], is determined using:

Φ(x) =

∫ x

−∞

(
n∑

i=1

[

αi

σi
√
2π

e

(

−
(x−µi)

2

2σ2
i

)])

dx (3.1.11)

=
1

2

n∑

i=1

[

αi

[

1 + erf

(
x− µi

σi
√
2

)]]

(3.1.12)

where erf is the Gauss error function, a special function of sigmoidal shape. Now, Φ(x) needs to

be normalized to fit the desired probability range.
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Φ∗(x) =
Φ(x)

lim
x→∞

(Φ(x))
) , Φ∗(x) ∈ [0, 1] (3.1.13)

Fig. 3.4(b) shows the cumulative probability distribution P (x) of the acceleration data

adjusted for a random number generator. The displayed function is derived as the inverse of Eqn.

3.1.13 and is solved numerically.

P (γ) = Φ∗
−1(γ) (3.1.14)

3.2 Tool Validation

10 hours (489km) of driving data was acquired in the City and County of Honolulu in

March and April of 2011. The test vehicle used for this study is a standard compact car (1200kg,

92hp @ 5500rpm, 5-speed-manual) with an internal combustion engine. The collected driving data

incorporates all possible driving scenarios (9% SNG, 38% URB, 17% SUB, 11% RUR and 25%

HIG). A QstarzTMBT-Q1000eX GPS device was used for data acquisition. The device is based on

a MTK II GPS chipset featuring a tracking sensitivity of -165dBM, 66 Channel tracking and 5Hz

data logging. The manufacturer lists a velocity accuracy of ± 0.1m/s. A Savitzky-Golay smoothing

filter is used to eliminate the high frequency noise (>0.5Hz) caused by inaccuracies of the GPS

device and by short interruptions of the satellite connection when driving underneath bridges [67].

The probability functions of all parameters in Table 3.2 were extrapolated from the data

according to the methodology described in Section 3.1 and implemented into the DCGT. The tool is

now capable of creating an unlimited amount of drive cycles based on the stochastics of this driving

profile. Fig. 3.5 shows recorded and generated DPs for different driving scenarios. Evidently, the

generated cycles possess characteristics similar to the original data for all five scenarios in terms of

acceleration speed, pulse duration, average speed, velocity frequencies, and others.

A more in-depth investigation of the comparability of the recorded data and the cre-

ated driving profile can be achieved by looking at their speed-acceleration frequency distributions

(SAFDs). SAFD analysis provides the needed information about the time proportions of a driving

profile [42]. Fig. 3.6 shows the SAFD for both the recorded data and 10h of data created by the

DCGT. Two frequency peaks at (x = 0m
s2
, y = 23m

s
) and (x = 0m

s2
, y = 17m

s
) are characteristic

for the SAFD in Fig. 3.6(a). Similar peaks at (x = 0m
s2
, y = 22m

s
) and (x = 0m

s2
, y = 17m

s
), and

overall a very similar frequency distribution, are noticeable in the SAFD plots in Fig. 3.6(b). The

recorded driving data features an abrupt frequency drop at speeds higher than 29m/s. Considering
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Figure 3.5. Recorded (left column) and DCGT generated (right column) driving pulses for 5 the
different driving scenarios

that the DCGT probability functions are based on Gaussian distributions, it is not possible to model

such a rapid probability drop-off without implementing constraints. However, the DCGT SAFD is

fairly broad and low in the discussed region and therefore not expected to have any considerable

effects on the optimization results of the vehicle.
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[h]

Figure 3.6. A speed-acceleration frequency distribution (SAFD) histogram and contour plot for 10h
of recorded drive cycle data vs. 10h of DCGT generated drive cycle data. The data excludes the
zero-acceleration/zero-speed bin to prevent visual distortion due to its dominance. (a) 10h of real
drive cycle data recorded in the City and County of Honolulu, USA, (b) 10h of DCGT generated
drive cycle data based on a stochastic driving profile extrapolated from recorded data in (a).

The physical impact of a driving profile on a vehicle can be examined by visualizing the

frequency domain of the power demand. The power demand over time is obtained by converting

a drive cycle into a duty cycle by considering the dynamic properties of the vehicle. The vehicle

dynamics model (Section 2.1) calculates the incremental change in position of the vehicle and the

external forces for each iteration of the simulation. A driving profile can now be converted into an

estimated duty profile.

Fig. 3.7 visualizes the frequency spectra of both converted driving profiles in a power -

delta power frequency distribution (PdPFD) plot. Again, similar distributions of both, the recorded

profile and the DCGT profile, are observed. Both distributions feature one prominent power fre-

quency peak at (x = 0kW
s
, y = 7kW ). Additional common characteristic frequency peaks are
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Figure 3.7. A power - delta power frequency distribution (PdPFD) histogram and contour plot for
a duty cycle profile generated from 10h of recorded drive cycle data vs. 10h of DCGT generated
drive cycle data. The data excludes the zero-power/zero-delta-power bin to prevent visual distortion
due to its dominance. (a) Estimated power frequency distribution of 10h of real drive cycle data
recorded in the City and County of Honolulu, USA, (b) Estimated power frequency distribution of
10h of DCGT generated drive cycle data based on a stochastic driving profile.

located at (x = 0kW
s
, y = 2kW ), (x = 2kW

s
, y = 3kW ) and (x = −2kW

s
, y = 3kW ). The latter

two are characteristic of the acceleration and deceleration habits of the driver. The frequency distri-

bution in the x-y plane of Fig. 3.7(a) possesses a slightly wider foundation than its counterpart in

Fig. 3.7(b). This discrepancy is most likely caused by inaccuracies of the parameter fitting method-

ology for the probability functions. However, the stochastic impact during a vehicle optimization is

expected to be minor due to its comparatively small frequencies in this regions.
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Large-Scale Optimization on GPUs

4.1 Optimization in Engineering Design

Optimization is the act of obtaining the best result under given circumstances. In math-

ematical terms, optimization is the process of finding conditions that give the maximum or min-

imum value of a function [1]. Design optimization of complex systems requires immense data

processing and a tremendous number of calculations [2]. In the advent of high-speed computers,

optimization methodologies are becoming increasingly popular in engineering design [3]. Engi-

neering optimization is prevalent in various fields, such as structural design, shape optimization,

topological optimization, and logistics. Nevertheless, optimization of dynamic engineering systems

is exceptionally expensive in terms of computation speed and is therefore still constrained by related

limitations.

If mathematical optimization techniques are used for engineering design, the optimization

problem can usually be stated in the following form:

min
x

f(x) (4.1.1)

subject to gj(x) ≥ 0, j = 1, 2, ..., J

hk(x) = 0, k = 1, 2, ...,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., N

x ∈ S

The function to be minimized or maximized is the objective function f(x). The design

variables are represented by the column vector x = (x1, x2, ..., xN )T [3]. gj(x) ≥ 0 and hk(x) = 0

41
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define the two types of constraints, the first of which are inequality constraints and the second of

which are equality constraints. Design variables can be real-valued (x ∈ R
n), integer (x ∈ Z

n),

binary (x ∈ {0, 1}n) or categorical (e.g., x ∈ {blue, red, white, green}n) [4]. Categorial spaces can

usually be replaced by integer spaces by assigning integers to each category. S is the search space or

solution space, which is the set of all possible solutions. Again, S can be real-valued, integer, binary,

categorical, or a combination of all, since its composition depends on the properties of the design

variables. For example, assuming that the design optimization of a structural beam consists of two

design variables x = (x1 = type of cross section, x2 = web thickness), x1 would be element of a

categorical or integer search space and x2 of a real-valued search space. The overall search space

would be a cartesian product of both solution sets: Sx ∈ (Sx1 × Sx2) with x1 ∈ Z and x2 ∈ R.

Design variables can be classified into two categories: independent design variables and

dependent design variables. Independent design variables are all crucial design parameters rep-

resented by the design vector x. Dependent design variable are functions of independent design

variables and are therefore not required to be included in the design vector. Constraints are condi-

tions that a solution to an optimization problem must satisfy. The restrictions that must be fulfilled

to produce an acceptable design are called design constraints. Constraints that are physical limita-

tions on the state of the system are termed functional constraints [1]. For example, the capacity of

a battery pack would be restricted by design constraints, whereas functional constraints would be

used to limit the SOC range. Since functional constraints are constraints on the state of the system,

they can be classified into three categories:

1. Threshold constraints: If a state variable s surpasses its threshold constraint gt(s), it is set

equal to the threshold constraint.

Require: s ≤ gt(s)

if s > gt(s) then

s = gt(s)

end if

2. Elimination constraints: If a state variable s surpasses its elimination constraint ge(s), the

fitness evaluation is stopped and the candidate is eliminated from the set of candidates.

Require: s ≤ ge(s)

if s > ge(s) then

kill candidate
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end if

3. Penalty constraints: If a state variable s surpasses its penalty constraint gp(s), a penalty p(s)

is imposed on the objective.

Require: s ≤ gp(s)

if s > gp(s) then

f(x)← f(x) + p(s)

end if

Engineering design problems are frequently characterized by multiple, often times con-

flicting, objectives. For example, reducing the weight of an airplane wing while minimizing the

cost of materials are two conflicting objectives. Light materials, such a composite carbon fiber, are

usually more costly than their cheaper, but heavier alternatives. There are two common approaches

to solve multi-objective optimization problems. First, all objectives can be combined into a single

aggregate objective function using a weighting function. Secondly, a multi-dimensional candidate

solution (Pareto optimal solution) can be determined followed by a decision maker selecting an

ideal candidate according to his preferences. The advantage of the latter approach is that no a priori

information or weighting function is needed for the actual optimization [5].

4.2 FCHEV Optimization Problem

The FCHEV optimization problem, which is predominantly used in this dissertation, is

stated as:

min
p

k∑

i=1

mi
fH2

(p) (4.2.1)

p = [Pmt, nfc, Q] (4.2.2)

The objective in Eqn. 4.2.1 is the overall hydrogen consumption in the lifetime of the vehicle. The

stopping point parameter k is the number of performed drive cycles until the lifetime mileage of the

vehicle dlt is reached. k is determined by algorithm 4.1.

The selected independent design parameters are the rated motor power p1=Pmt, the num-

ber of fuel cells in the stack p2=vst and the capacity of the battery pack p3=Q. Hence, the design

vector p contains the crucial sizing parameters for the power sources and power suppliers of the

FCHEV power train. The choice of design parameters allows for the study of the ideal power train
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Algorithm 4.1 Stopping point parameter k
d = 0, k = 1

while d ≤ dlt do

d = d+ dDCk

k = k + 1

end while

composition for individual (application and driver-specific) driving profiles, for specialized driving

profiles (pure city driving, pure highway driving, etc.), and for universal driving profiles (all-purpose

vehicle). It is then possible to quantify the efficiency gain form using an optimized power train for

certain driving profiles versus universal or non-ideal power trains. Furthermore, degradation and

uncertainties of the component models can be investigated.

From an engineering point of view, it often makes sense to discretize search spaces for

design parameters of physical systems to save computation time. This simplification is feasible since

it is not the mathematically optimal solution that is sought after, but the solution that is optimal while

still being practical. For example, fuel cells in a fuel cell stack are usually identical in terms of their

size specifications. It is physically not viable to integrate fuel cells of different sizes into one stack.

Therefore, it is not required to describe the design parameter vst as a real-valued variable. The

search space and the computation time are drastically reduced if vst is described as an integer.

The following equations are an example of how the design constraints of the proposed

optimization problem can be reasonably described:

0hp < Pmt ≤ 200hp, Pmt ∈ Z
+
200 (4.2.3)

0 < nfc ≤ 600, nfc ∈ Z
+
600 (4.2.4)

0Ah < Q ≤ 15Ah, (Q× 100) ∈ Z
+
1500 (4.2.5)

All three design variables are discretized into partitions of equal length. The minimum discretization

length is chosen according to technical and economical feasibility. In the presented example, the

cardinality of the overall search space can be determined as follows:

S = SPmt × Snfc
× SQ (4.2.6)

⇒ |S| = |SPmt | × |Snfc
| × |SQ| = 200× 600 × 1500 = 1.8× 108 (4.2.7)

The cardinality is equivalent to the number of possible solutions for the optimization problem.
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Alongside design constraints, meaningful functional constraints have to be selected for

most dynamic systems. Table 4.1 lists the functional constraints implemented in the FCHEV model.

The vehicle speed cannot be zero due to Eqn. 2.1.7 and Eqn. 2.1.8. To remedy this, a threshold

Table 4.1. Functional constraints of the FCHEV model

State variable Type of constraint Constraint condition Consequence

Vehicle speed v Threshold constraint v ≤ 1× 10−8 v = 1× 10−8

Battery state-of-charge SOC Elimination constraint 20% ≤ SOC ≤ 80% kill candidate

Battery degradation Q∗

Q
Elimination constraint Q∗

Q
≤ 80% kill candidate

Fuel cell voltage vfc Elimination constraint vfc < 0 kill candidate

Power demand Ptotal Penalty constraint Ptotal > Pmt mfH2
= mfH2

· p(Ptotal)

constraint is used to replace the stopping speed with a value that is very close to zero (10−8m
s

).

The battery state-of-charge is constrained within its safe range of operation [6]. An elimination

constraint is applied since SOCs outside of the defined range indicate that the battery is too small

for the intended task. Battery damage has to be avoided. The capacity fade of the battery pack is

limited to 20% according to DOE guidelines [7]. At higher levels, the degradation rate increases

rapidly, and the power train may reach a critical state. An elimination constraint is selected to

prevent this scenario. Numerical instabilities cause negative fuel cell voltages, which indicate that

the proposed fuel cell stack is sized too small. Since these instabilities are highly non-linear, it

is very challenging to design a meaningful penalty function. To simplify matters, an elimination

constraint is used instead. Finally, a penalty constraint is used for the overall power demand of the

vehicle. If the power demand is higher than the maximum rated power of the motor, the requested

power cannot be supplied. The effect might be negligible if it only occurs a few times in the lifetime

of a vehicle. However, if the effect is a repeatedly occurring phenomenon, the proposed design

would be inadequate. In this case, a penalty function can account for the phenomenon according to

the number of occurrences.

4.3 Optimization with Genetic Algorithms

Genetic algorithms are selected as the optimization method of choice in this dissertation

for the following reasons:

• GAs are meta-heuristic optimization routines (Section 1.1) and are therefore parallelizable on

the GPU architecture.
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• GAs are efficient and effective at finding optimal solutions in huge search spaces.

• GAs are mostly generic and can be applied to many types of problems. Little knowledge and

information is needed about the problem domain [8].

• The efficiency of GAs can be significantly improved by adjusting the optimization parameters

towards the characteristics of the optimization problem.

• GAs have been proven to be effective optimization tools for a large number of applications

[9].

The GAs proposed in this study consist of the operators shown in Fig. 4.1, which are population

initialization, selection, crossover, mutation, and termination. The following paragraphs give an

Figure 4.1. Operators of the genetic algorithm

overview of the operator’s specifications used in this study.

4.3.1 Population Initialization

The ideal population size depends on the nature of the optimization problem and the

hardware architecture [10, 11]. Section 5.2.1 and 5.2.2 describe how the optimal population size

can be determined. Depending on the convergence properties of the optimization problem, the ideal

population size can range from as little as 20 members to more than 100,000 members [12].



www.manaraa.com

Chapter 4 Large-Scale Optimization on GPUs 47

Initial population members can be either seeded in regions where optimal solutions are

expected, equally distributed over the search space, or randomly generated. In this study, the latter

option is chosen. A uniform random number generator ([0,1]) is used to create the initial population,

as seen in Algorithm 4.2.

Algorithm 4.2 Random initialization of GA population members
Require: g1 ≤ xn ≤ g2, 0 ≤ r ≤ 1

for i = 1→ n do

r = rand()

xi = g1 · r · (g2 − g1)

end for

4.3.2 Selection

Selection is the process of choosing the fittest individual candidates of a population for

later crossover (breeding). The fitter a candidate, the more times it is likely to be selected. The

selection process in this study is implemented as follows:

1. Fitness Evaluation

2. Sigma Scaling

3. Sorting - Odd-even transposition sort

4. Elitism

5. Fitness proportionate selection

Fitness Evaluation

Each candidate must be evaluated in the selection process. Therefore, the FCHEV model

is executed for each population member. The results (objective) are saved and used in the following

operator steps.

Sigma Scaling

Sigma scaling keeps the selection pressure (the degree to which highly fit candidates are

allowed many offspring) relatively constant during the optimization process [13]. The scaled fitness
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f∗

i (x) is a function of its fitness before scaling fi(x), the population’s mean fitness f̄ , the standard

deviation of the population’s fitness σ, and a constant scaling coefficient s.

f∗

i (x) = 1 +
fi(x)− f̄

s · σ , σ > 0 (4.3.1)

When the standard deviation is high, the probability of being selected is very similar for each candi-

date. On the other hand, fit candidates have a higher probability of being selected when the standard

deviation is low. This usually happens during the later part of the optimization, when the population

is more converged. The selection pressure is increased and evolution can continue.

Odd-Even Transposition Sort

Algorithm 4.3 Odd-even transposition sort
Require: n is even

for i = 0→ n do

for j = 0→ n/2− 1 do

if f [2j] > f [2j + 1] then

swap(f [2j], f [2j + 1])

end if

end for

for j = 0→ n/2− 1 do

if f [2j + 1] > f [2j + 2] then

swap(f [2j + 1], f [2j + 2])

end if

end for

end for

Odd-even transposition sort (OETS) is used to sort the candidates according to their fitness

and boasts several advantages, which are:

• OETS is parallelizable on the GPU architecture.

• OETS is simple to implement.

• OETS is applicable to different array sizes if even-numbered.
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The algorithm performs compare-exchange operations, alternating between odd-even pairs and

even-odd pairs, until convergence is reached. The worst case performance of the algorithm is O(n2).

Algorithm 4.3 shows a pseudocode implementation of odd-even transposition sort.

Elitism

In order to not lose the fittest candidates, elitism reserves spots for the best parent can-

didates in the population of the next generation [14]. The elite parent candidates are transfered

without any modifications, i.e. crossover and mutation. Elitism prevents a population from moving

away from an already-found optima. Unless otherwise specified, the number of elite parents is 4 in

this study.

Fitness Proportionate Selection

Fitness proportionate selection (FPS) is analogous to a roulette wheel with each section of

the wheel proportional in size to the fitness of the candidate. Hence, fitness proportionate selection

is also known as roulette-wheel selection. The functioning of the operator is described in Algorithm

4.4. First, a cumulative probability is assigned to each candidate of the population. The cumulative

probability range is scaled to [0,1]. Secondly, candidate pairs are determined to generate offspring

for the next generation using a random number generator ([0,1]). Candidate pairs are created for

each design parameter of the design vector. Hence, the total number of candidate pairs is the total

population size minus the number of elite parents times the number of design parameters.

4.3.3 Crossover

Crossover is an operator that creates an offspring from two selected parent candidates.

There are several crossover techniques, most of which are binary crossover techniques, such as

one-point crossover, cut-and-slice, and uniform crossover. Linear crossover is used as the crossover

operator in this study, since it is an efficient, real-valued technique with easy implementation. The

design parameters of the offspring are the mean values of the equivalent design parameters of the

parents:

xnewi =
x∗imale

+ x∗ifemale

2
(4.3.2)
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Algorithm 4.4 Fitness proportionate selection
fsum = 0

for i = 0→ n do

fsum = fsum+ fi(x)

end for

pf [0] = f0(x)/fsum

for i = 1→ n do

pf [i] = pf [i− 1] + fi(x)/fsum

end for

Number of elite parents: nEP = 4

for i = 0→ (2n− nEP ) · |x| do

r1 = rand(), r2 = rand()

for j = 1→ n do

if pf [j − 1] ≤ r1 < pf [j] then

c1 = j

end if

if pf [j − 1] ≤ r2 < pf [j] then

c2 = j

end if

end for

x∗imale
← xc1 , x∗ifemale

← xc2

end for

4.3.4 Mutation

Mutation is an operator that modifies the values of some design parameters from their

initial states. Mutation is used to ensure candidate diversity and prevent the population from con-

verging to a local optimum. Inspired by biological mutation, the occurrence of mutation is restricted

to a mutation probability. If the mutation probability is set too high, the genetic algorithm will per-

form similarly to a random search. Gaussian mutation is used in this study to alter the floating

point design parameters of selected offspring. A Gaussian distributed value is generated and added

to the selected design parameters. If the resulting value falls outside the constraints, the mutation

procedure will be repeated. Generating Gaussian-distributed numbers is not a simple task on GPUs,

however, uniform random number generation is supported in the CUDA environment. The Box-
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Muller transform creates pseudo-Gaussian-distributed numbers by mapping a uniform distribution

to a standard normal distribution [15]. Two random, uniformly distributed variables ru1 and ru2 in

the interval [0,1] are transformed to become normal distributed variables (rn1 , rn2) using:

rn1 =
√

−2 ln ru1 · cos (2πru2) (4.3.3)

rn2 =
√

−2 ln ru1 · sin (2πru2) (4.3.4)

Algorithm 4.5 Floating point Gaussian mutation
for i = 0→ (2n− nEP ) do

rg = rand()

if rg < CandidateMutationRate then

for j = 0→ |x| do

rc = rand()

if rc < ParameterMutationRate then

m = f(boxmuller(), xj)

xj ← xj +m

end if

end for

end if

end for

Algorithm 4.5 explains the implementation of the mutation operator. Two mutation rates

are defined: First, the candidate mutation rate (CMR) is the probability that mutation occurs on one

or more design parameters of a population candidate. Second, the parameter mutation rate (PMR)

is the probability that mutation occurs on a design parameter if the candidate it belongs to has been

selected for mutation. If a design parameter is selected for mutation, the operator adds a Gaussian-

distributed value to the parameter. The added value is the result of the Box-Muller transform times

a parameter-specific scaling function.

4.3.5 Termination

GAs are either terminated when a certain convergence criteria is met, or after a pre-defined

number of iterations. If a priori knowledge about the design problem is limited, it might be diffi-

cult to define reasonable convergence criteria. To prevent infinite looping, a maximum number of



www.manaraa.com

Chapter 4 Large-Scale Optimization on GPUs 52

generations should be defined. Infinite looping might occur if the population gets stuck in a local

minimum.

4.3.6 Convergence Testing

Typical symptoms of underperfoming optimization procedures include the algorithm get-

ting trapped in local minima and slow convergence rates in areas with extremely low gradients. Both

symptoms often emerge as conflicting objectives when addressed during the tuning of meta-heuristic

optimization algorithms. On the one hand, it is desirable to maintain a wide-spread population over

the entire search space to locate all possible minima. On the other hand, a large concentration of

solution candidates within close proximity of a minima increases the convergence rate of determin-

ing the minima’s exact location. Hence, an effective optimization algorithm is capable of escaping

from local minima while featuring a sufficient convergence rate.

The characteristics of optimization search spaces of real-world applications are often un-

known. As a result, the optimization routine of choice needs to be preliminarily assessed for extreme

test cases to obtain a feeling for both its convergence capabilities and convergence speeds. Conver-

gence capabilities of optimization procedures are typically evaluated by using literature benchmark-

ing functions [16]. In the following paragraphs, the convergence performance of the proposed GA

is tested for various functions of different complexity, dimensionality, and optimization resistance.

The selected functions feature extreme search spaces with either a large number of local minima,

extensive areas of low gradient, or a combination of both. It is shown that the proposed GA performs

remarkably well for all test scenarios. In all of the presented tests, the algorithm managed to de-

termine the global minima within the required accuracy while exhibiting a reasonable convergence

rate at all times.

Rosenbrock Function

The Rosenbrock function, also known as the second De Jong function, is a non-convex

function commonly used for performance testing of meta-heuristic optimization algorithms [17].

f(x) =

n−1∑

i=1

[
100(xi+1 − x2i )

2 + (1− xi)
2
]
∀x ∈ R

n (4.3.5)

Fig. 4.2 illustrates the characteristics of the Rosenbrock function for n=2. The global minimum is

located within a wide-spread valley of low gradients. The challenge for the algorithm is to quickly

converge to the global minimum despite the nearly flat contour of the valley.



www.manaraa.com

Chapter 4 Large-Scale Optimization on GPUs 53

Figure 4.2. Rosenbrock’s function for n=2, -2.048 ≤ xi ≤ 2.048. The global minimum is located at
f(xi = 1) = 0.

Figure 4.3. 100 GA convergence tests and average convergence process for Eqn. 4.3.5 with n=3,
-2.048 ≤ xi ≤ 2.048 and random, uniformly distributed initial populations. Population size=200,
CMR=0.9, PMR=0.4.

Fig. 4.3 shows the convergence curves of 100 performed optimization runs with random

initial populations and the resulting average convergence curve. It is noticeable that all 100 runs

converge to an accuracy of less than 10−5 needing between 60 and 3500 generations to accomplish

the task. Furthermore, a bend in the convergence curve is predominant, which can be explained

by the properties of the Rosenberg function. Finding the valley and converging to a function value

close to the global minimum can be quickly achieved by the GA. On on the other hand, determining

the exact location of the minima is more challenging and therefore causes the observed decrease in

the convergence rate.
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Figure 4.4. Easom function for -100 ≤ xi ≤ 100. The global minimum is located at f(π, pi) = −1.

Figure 4.5. 100 GA convergence tests and average convergence process for Eqn. 4.3.6 -100 ≤
xi ≤ 100 and random, uniformly distributed initial populations. Population size=200, CMR=0.9,
PMR=0.4.

Easom Function

The Easom function (Eqn. 4.3.6) is a 2-dimensional benchmarking function for which the

majority of the search space is equivalent to a nearly flat plane with no considerable gradient. Its

only minima is located at f(π, π) = −1.

f(x1, x2) = −cos(x1)cos(x2)exp(−(x1 − π)2 − (x2 − π)2) (4.3.6)

Fig. 4.5 illustrates the GA performance when tested with the Easom function. All of the

100 performed tests converged very quickly within less than 15 generations. It can be concluded

that the mutation operator of the GA prevents the algorithm from stagnation when the crossover

operator is non-functional due to equivalent function values of all population members.
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Figure 4.6. Rastrigin’s function for n=2, -5.12 ≤ xi ≤ 5.12. For A=10, the global minimum is
located at f(xi = 0) = 0.

Figure 4.7. 100 GA convergence tests and average convergence process for Eqn. 4.3.7 with n=3,
-5.12 ≤ xi ≤ 5.12 and random, uniformly distributed initial populations. Population size=200,
CMR=0.9, PMR=0.4.

Rastrigin Function

The Rastrigin function (Eqn. 4.3.7) is a non-linear, multimodal function commonly used

for benchmarking. It is characterized by a large number of deep local minima with similar function

values, as illustrated in Fig. 4.6. The Rastrigin function is considered a very difficult optimization

problem due to its large search space and a high probability of getting entrapped in a local minima.

f(x) = 10n+
n∑

i=1

[
x2i − 10cos(2πxi)

]
∀x ∈ R

n (4.3.7)
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Fig. 4.7 shows the convergence curves for a 3-dimensional search space. All test functions

converge between 14 and 420 generations. The convergence curves approach the global minimum

in a stepwise manner, which is caused by the algorithm constantly discovering local minima through

mutation until the global minimum is found.

Langermann Function

Figure 4.8. Langermann function for n=2, m=5, aij = [3, 5, 2, 1, 7; 5, 2, 1, 4, 9], 0 ≤ xi ≤ 10.

Figure 4.9. 100 GA convergence tests and average convergence process for Eqn. 4.3.8
with n=3, 0 ≤ xi ≤ 10 and random, uniformly distributed initial populations. Population
size=200, CMR=0.9, PMR=0.4, aij = [3, 5, 2, 1, 7; 5, 2, 1, 4, 9; 1, 2, 5, 2, 3] and global minimum
at f(2.793, 1.597, 5.307) = −4.156.
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The Langermann function (Eqn. 4.3.8) is a multimodal benchmarking function that fea-

tures both flat sections with very small gradients and areas with a multitude of nested, ring-shaped

minimas (Fig. 4.8). It therefore demands universal applicability from the optimization algorithm.

f(x) =

m∑

i=1

ci exp[−
1

π

n∑

j=1

(xj − aij)
2] cos[π

n∑

j=1

(xj − aij)
2] ∀(x, c) ∈ R

n, a ∈ R
n×m (4.3.8)

Fig. 4.9 shows the results of 100 performance tests using the Langermann function. Again, all

optimization runs converge within 9 to 270 generations. The average convergence curve features a

relatively long period with a zero convergence rate before approaching the global minimum, since

the ring-shaped characteristics of the local minima hamper the effectiveness of the crossover oper-

ator. However, the GA manages to determine the optimal solution at all times.

4.4 FCHEV Optimization Methodology

The following requirements are needed to be fulfilled by the FCHEV optimization method-

ology:

• Objective: Determine the best system design in terms of minimizing the overall fuel con-

sumption for a given driving profile.

• Simulation length: Simulate the entire vehicle lifetime for each candidate (100,000km).

• Evaluation data: Use driving profiles to account for effects caused by variations in driving

patterns.

• Lifetime effects: Account for battery degradation during lifetime simulation.

• Optimization time: Achieve reasonable computation time until convergence criteria is met

(. 2 days).

• Energy management: Optimize energy management for each drive cycle simulation to

achieve comparability of all candidates.

A two-level optimization methodology is proposed to determine the ideal system config-

uration while achieving the design goals. Fig 4.10 illustrates the framework of the optimization

method. The methodology consists of two genetic algorithm optimization routines executed in two
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loops, an outer loop and an inner loop. The outer loop finds the optimal component design param-

eters, which are defined by the design vector in Eqn. 4.2.2. The objective is to minimize the fuel

consumption for the entire lifetime of the vehicle (Eqn. 4.2.1). There are several ways to achieve

this in terms of data partitioning.

1. All driving data from the lifetime of the vehicle is created as one large drive cycle up front

and fed to the simulation. The model then simulates the total lifetime of the vehicle without

interruptions.

2. The DCGT is integrated with the vehicle simulation and generates the drive cycle data on-

the-go. Hereby, the DCGT only creates the necessary data for one timestep at a time on the

fly. The simulation is stopped when the overall mileage reaches the lifetime mileage.

3. The lifetime driving data is split into partitions of equal array length, equal mileage, or similar

topology (e.g. driving scenarios). A new data partition is created each time the simulation

has finished evaluating the previous data partition. The final system state of the previous

simulation is saved and used as the new initial state for the next simulation. This process is

repeated until the overall mileage is greater than or equal to the anticipated lifetime mileage.

Option 1 requires a lot of memory space for the large data array. Modern GPUs currently do not

provide enough fast memory to efficiently handle arrays of that size. Option 2 is very efficient

in terms of memory utilization. However, due to the lack of a data history, it is very challenging

to design an EMS that ensure comparability between candidates. Option 3, on the other hand, is

very suitable for an efficient CUDA implementation and a simple EMS integration. The maximum

array size of the data partition can be determined to fully utilize the fast memory space of the GPU

and thereby minimize the memory latency between host and device. In the proposed optimization

procedure, the DCGT generates drive cycles that consist of only one type of driving scenario. This

uniformity eases the task of finding the ideal energy management for the drive cycle.

The inner optimization loop determines the ideal EMC configuration for each drive cycle

simulation of each candidate. Since the inner optimization is nested into the outer optimization loop,

the computation effort increases exponentially. However, the nested implementation is necessary

in order to guarantee comparability of the population members in the outer loop. Assuming the

EMC parameters are not optimized for each drive cycle, then low-potential candidates with efficient

EM parameters might outperform high-potential candidates with inefficient EM parameters. High-

potential candidates might appear as low-potential candidates and will have an unproportionally low
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Figure 4.10. Two-level optimization framework using two genetic algorithms: The outer loop finds
the ideal component design configuration p for 100,000km of drive cycle data; the inner loop de-
termines an ideal energy management setup for each drive cycle simulated for each population
member.

reproduction probability. Capable genes might therefore not be represented in the next generation.

Furthermore, high-potential design candidates, which have performed well in previous generations,

might perform worse in the following generations because of suboptimal EMC parameters. Hence,

the entire GA routine might not converge due to inconsistencies in the fitness evaluation. As a result,

the inner EMC optimization loop is absolutely essential.

To use a genetic algorithm for the inner loop, it is necessary to create sub-populations

for each candidate of the outer optimization loop. The overall population size of the optimization
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problem thereby increases to:

ntotal = nouter · ninner (4.4.1)

The objective of the inner loop optmimization is stated as:

min
q

mfH2
(q) (4.4.2)

q = [α1, α2] (4.4.3)

where mfH2
is the hydrogen consumption for one drive cycle, and q is the design vector containing

the EMC parameters α1 and α2, which are used in Eqn. 2.5.1. Reasonable constraints for the design

vector x can be formulated as:

0 ≤ α1 ≤ 0.5, α1 ∈ Z
+
500 (4.4.4)

0.5 ≤ α2 ≤ 1.5, α2 ∈ Z
+
1000 (4.4.5)

The best candidate of an inner loop optimization is the one that has the lowest fuel con-

sumption while maintaining a well-balanced battery SOC. If the SOC of the final state is smaller

than the SOC of the initial state then the battery acted as an active power source and not just as a

buffer. The extra energy provided by the battery must be accounted for in the objective function in

order to ensure comparability of the candidates. The fuel consumptions of the best candidates are

summed until the lifetime mileage is reached. During this process, the model keeps track of the bat-

tery utilization, which is needed to determine the battery’s state of degradation. For each generated

drive cycle, the degradation proceeds individually for each candidate. The state of degradation is set

back to zero for each new iteration of the outer loop. All other state variables are also re-initialized.

The optimization is stopped when the convergence criteria is met or if the maximum number of

generations is reached.

4.4.1 Cardinality of the Search Space

The search space cardinality Stotal of the proposed two-level optimization routine can be

estimated by the following equation:

|Stotal| =
(
|SPmt | × |Snfc

| × |SQ|
)

︸ ︷︷ ︸

Cardinality of outer loop search space

+ [(|Sα1 | × |Sα2 |) · i]
︸ ︷︷ ︸

Cardinality of inner loop search space

·k · nconvergence (4.4.6)

where i is the number of population members of the outer loop, which is equivalent to the number

of optimizations performed for each drive cycle in the inner loop. k is number of drive cycles in
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the lifetime of the vehicle, and nconvergence is the number of generations of the outer loop until the

convergence criteria is met. The cardinality of the outer loop search space is given in Eqn. 4.2.7.

Eqn. 4.4.5 and 4.4.5 define the search spaces of the design parameters of the inner loop. nouter

typically lies in the interval {20..800}. The mileage of a DCGT generated drive cycle is usually

between 5km and 100km. If the overall lifetime of the vehicle is set to 100,000km, then k lies in

the interval {1000..20000}. The minimum number of generations of the outer loop is 2, and the

maximum number is limited to 100. Hence, the interval range for nconvergence is {2..200}. The

overall cardinality of the total search space is therefore estimated to be an element of the following

interval:

|Stotal| ∈ {
(
1.8 × 108 + (500 · 1000 · 20) · 1000 · 2

)
.. (4.4.7)

(
1.8× 108 + (500 · 1000 · 800) · 20000 · 100

)
}

→ |Stotal| ∈ {2× 1010 .. 8× 1014} (4.4.8)

4.5 GPU Implementation

In order to optimally implement the methodology proposed in Section 4.4, it is crucial

to understand the CUDA programming model. A CUDA kernel is executed by a large array of

Figure 4.11. The CUDA programming model consisting of grids, blocks and threads.
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threads. All threads run the same program, but with different input data (SIMD). Threads are

usually organized into a two-level hierarchy, as shown in Fig. 4.11 [18]. When a kernel is invoked,

it is executed on the GPU by a grid. A grid consists of one or more blocks, which again contain the

threads. All blocks have the same number of threads assigned to them. A thread block is a batch of

threads that allows for sharing data between the threads through shared memory. Thread blocks also

enable synchronizing the execution of the threads within the block. However, threads from different

blocks cannot interact; they operate independently.

Each multiprocessor of the GPU can only execute a limited number of threads at the same

time, therefore, thread blocks are divided into warps. A warp is a group of threads within a block

that are executed together. Each thread block is mapped to one or more warps. If the number of

threads in a block is not a multiple of the warp size of the GPU, then the computational occupancy

of the GPU is not fully utilized. Hence, an efficient CUDA implementation needs to be designed

according to the structure of the CUDA programming model.

Two different GPU architectures have been used in this dissertation, which are single-

GPUs and multi-GPUs. Single-GPUs are typically consumer-grade graphic cards or specially de-

signed parallel processing units, which are embedded in a workstation computer. A multi-GPU

cluster is a computer cluster in which each node is equipped with a GPU. The implementation of the

proposed optimization routine slightly differs according to the architecture. The fitness evaluations

of the sub-populations are the most computationally demanding tasks because of their enormous

multitude. Hence, it is highly desirable to parallelize this evaluation process. Since the fitness eval-

uation process is extremely scalable, it can not only be executed in parallel on the multiprocessors

of a GPU, but it can also be split between numerous devices.

Fig. 4.12 illustrates the implementation for a single-GPU architecture. First, the popula-

tion for p is initialized on the host. Sub-populations for q are then initialized for each candidate of

the main population. Each sub-population is assigned to a separate thread block on the device with

the number of threads in a block equaling to the number of candidates in the sub-population. All

blocks are assigned to a single grid. The FCHEV model and the GA of the inner optimization loop

are implemented within the kernel, which is executed by the grid. Drive cycles are generated by the

DCGT on the host and transfered to the global memory of the device. New grids are then initialized

on the device for every simulated drive cycle. After each iteration of the outer loop, the fitness level

(overall fuel consumption) of each block is saved to the host memory. Next, the outer loop GA

optimization is executed on the host. A new population is created, split into sub-populations and

send to the device. This process is repeated until convergence is achieved.
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Figure 4.12. 2-level optimization methodology implemented on a single-device GPU. Each sub-
optimization is performed in separate blocks, which enables scalability.

Fig. 4.13 shows the implementation for a multi-GPU architecture. The population for p

is initialized on the host. Sub-populations are then initialized for each candidate of the main pop-

ulation. Next, the sub-populations are evenly distributed into groups equivalent to the number of

available devices. Each group is represented by one grid on each device. The sub-populations of a

group are assigned to blocks in the corresponding grid, and the same kernel and the same drive cy-

cles are executed on all devices in parallel. The results of each block are copied to the host memory

after each iteration of the outer loop. The outer loop GA optimization is executed on the host. A

new population is created, split into sub-populations, which are grouped according to the number

of available devices, and sent to the device. This process is repeated until convergence is achieved.
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Figure 4.13. 2-level optimization methodology implemented on a multi-GPU architecture. Each
sub-optimization is performed in separate blocks. The blocks are evenly split into grids, which are
executed on multiple devices in parallel.

Grid synchronization is essential for the multi-GPU implementation to ensure convergence of the

GAs.

The synchronization of threads within one block is illustrated in Fig. 4.14. The kernel,

which is simultaneously launched by each thread, consists of two parts: The first part is the FCHEV

simulation and the second part is the inner loop GA optimization. The evaluation of the FCHEV is

an embarrassingly parallel workload, which means that no dependencies exist between the parallel
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Figure 4.14. Thread synchronization for the kernel within one block

tasks. The GA, on the other hand, is mostly a non-embarrassingly parallel workload. Thread

communication is required for many of its operators.

The kernel is repeatedly executed until the GA converges. Each thread of one block gets

assigned the same design vector p but different candidates for q. The battery’s state-of-degradation

and SOC vary for each thread and are therefore quantified by independent state variables. The fact

that threads are grouped in warps and are not necessarily synchronized needs to be considered dur-

ing the implementation of the GA. Within a warp, threads are automatically synchronized. However,

some GA operators require thread-communication between threads of different warps. It is there-

fore necessary to synchronize all threads before executing such operators. For example, the sigma

scaling operator requires the computation of the average fitness of all threads in a block (Section

4.3.2). Hence, the operator can only be executed after all threads have finished the FCHEV simu-

lation. Also, the average fitness is a mutual variable for all threads. Thus, it is sufficient to declare

just one variable for the average fitness for each block. To avoid memory bank conflicts on the
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Figure 4.15. Parallel odd-even transposition sort implementation on the GPU architecture

GPU, it makes sense to have only one thread calculating the average fitness while all other threads

are halted. A similar approach is used to determine the cumulative sum of the fitness proportionate

selection operator: After synchronizing all threads in the block, all but one thread are paused. The

still-active thread then determines the cumulative sums for all threads in the block.

The OETS is used to rank the candidates according to their fitness (Algorithm 4.3). Thread

communication is limited to neighboring pairs of threads. The odd-even pairing of the threads al-

ternates with each iteration of the sorting algorithm, as illustrated in Fig. 4.15. Once again, it is

necessary to synchronize the threads if the total number of threads in the block exceeds the max-

imum warp size. Otherwise, parameters might swap their positions with parameters of different

warps that might not be at the same stage of the algorithm at that time. The actual swapping com-

mand is invoked by only one of the threads in a pair. The other thread is paused in the meantime. If

both threads would call the swapping function simultaneously, the parameters would be re-swapped

to their original position. Hence, the function call would be redundant.
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For the linear crossover of the design parameters, all threads have to be able to access

all other threads in the block. Hence, thread synchronization must be performed before calling the

crossover operator. Each thread creates offspring by calculating the mean of design parameters from

the two selected threads. The threads return all state variables and the objective parameter to the

host memory when the GA converges or its maximum number of iterations is reached.
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Performance Evaluation

This chapter investigates the impact of the GA parameter setup on the performance of

the optimization methodology. First, the specifications of the hardware architectures used in this

dissertation are presented. Next, the algorithm performances of the inner loop GA and the outer

loop GA are studied as a function of their population sizes. Finally, the overall computation time

of the optimization methodology is quantified and analyzed in regards to the CUDA programming

model.

5.1 Hardware Configuration

To study the influence of the GPU hardware on the performance of the optimization

methodology, the CUDA code is evaluated on three different GPU architectures. Table 5.1 pro-

vides an overview of the GPU systems used in this dissertation.

The consumer-level graphic card GeForce GTX 460 2Win is housed in a Dell T7500

workstation with 24GB (6x4GB) DDR-1333MHz RAM, Intel W5590 4-core processor (8M Cache,

3.33GHz), Dell 0D881F motherboard, and Nvidia Tesla C1060 GPU (4GB GDDR3 RAM) on 64-

bit Ubuntu 11.04. This same workstation is used for the C/C++ and Matlab Simulink benchmarking

in Section 5.3. The GPU Cluster incorporates 8 Tesla M2050 computing units in a Dell server

housing with 8 nodes connected via InfiniBand. Each M2050 processor board can be separately

controlled.

68
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Table 5.1. Three different GPU architectures used for code analysis and benchmarking

Specification GPU Architecture 1 GPU Architecture 2 GPU Architecture 3

Category: Gaming/consumer-level GPU Computing Processor Board GPU Cluster

Brand Name: EVGA NVidia NVidia

Model: GeForce GTX 460 2Win Tesla M2050 Tesla M2050

Number of Devices: 2 x GeForce GTX 460 1 8 x Tesla M2050

Core Clock: 1350MHz 1150MHz 1150MHz

Memory Clock: 3600Mhz Effective 3092MHz 3092MHz

CUDA Cores: 2x336 (672) 448 8x448 (3584)

Streaming Multiprocessors: 2x7 (14) 14 8x14 (112)

Registers per Block: 16384 32768 32768

Memory Detail: 2x1024MB GDDR5 3072MB GDDR5 8x3072MB GDDR5

Memory Bandwidth: 2x115.2 GB/s 148.4 GB/s 8x148.4 GB/s

Processing Power: 2x907 (1814)GFLOPs 1040GFLOPs 8x1040 (8320)GFLOPs

Compute Capability: 2.1 2.0 2.0

5.2 Algorithm Performance

The population size has a significant impact on the performance of a genetic algorithm.

The proposed optimization methodology of Section 4.4 contains two GAs, which are nested into

each other. This integrated setup exponentially increases the influence of the population sizes on

the overall performance of the optimization routine. In addition, the occupancy of the GPU is also

dependent on the population size of the proposed optimization method. The occupancy is defined

as the number of active warps over the number of maximum active warps, and thus is a function of

the number of threads in a block (Section 4.5). The sub-population size of the inner optimization

loop is equivalent to the number of threads in a block. Hence, the computational efficiency of the

GPU is dependent on the population size.

The relationship between different population sizes and the performance of the proposed

FCHEV optimization is investigated in the following sections. An estimation of the ideal population

size for the inner loop GA is established in Section 5.2.1. The obtained results are then used in

Section 5.2.2 to determine the optimal population sizes of the outer loop GA for various GPU

architectures.

The drive cycle presented in Fig. 5.1 is used as a benchmark drive cycle for this per-

formance study. The cycle consists of 9% stop-and-go, 38% urban, 17% suburban, 11% rural and
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Figure 5.1. Benchmark drive cycle for population size optimization of the GAs. The percent com-
position in terms of driving scenarios is 9% SNG, 38% URB, 17% SUB, 11% RUR and 25% HIG.

25% highway driving. For lifetime simulations, the drive cycle is repeatedly used with the FCHEV

model until the vehicle lifetime (100,000km) is reached. The initial conditions of the optimization

problem are listed in Chapter 4.

5.2.1 Inner Loop GA

Convergence tests for the inner loop GA have been performed for 4 different population

sizes (30, 50, 100, 200). The maximum possible population size is limited to 200 candidates due

to memory constraints from the GPU architecture. Each series of tests consists of 5 simulations.

The estimated convergence rate is determined from the average of the performed simulations. Fig.

B.1-B.4 illustrate the convergence development for the four cases and Table 5.2 shows the obtained

results.

Table 5.2. Inner loop GA: Average number of iterations until convergence for different population
sizes

Population Size 30 50 100 200

Average number of iterations until convergence 17 8 4 3

Percentage improvement in convergence rate - 10.6% 4% 1.3%

The convergence rate improves when the population size is increased, however, it suffers

from diminishing returns. The larger the increase in population size, the smaller the improvement
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in convergence rate. To determine the optimal population size, it is necessary to consider the ker-

nel execution time, since it increases with the number of threads in a block. Therefore, the overall

execution time of the inner loop is estimated as the product of the number of iterations until con-

vergence and the kernel execution time. Fig. 5.2 shows the estimated GA execution time of the

inner loop versus the inner loop population size. The kernel execution time is a function of the GPU

occupancy, and thus increases in a step-like manner depending on the number of warps utilized for

the block. All three GPU architectures in this study feature a maximum of 32 threads per warp if

compiled with compute capability1 1.3. Hence, the optimal number of threads in a block is typically

a multiple of 32. On account of this, the ideal population size of the inner loop GA is determined

to be 192. Larger population sizes require the execution of an extra warp and therefore decrease the

GPU occupancy, which outweighs the improved convergence rate.

Figure 5.2. Estimation of the optimal population size for the inner loop GA on a GPU architecture

5.2.2 Outer Loop GA

An analogous approach is used to determine the optimal population size of the outer loop

GA. First, convergence tests are performed for 8 different population sizes (20,30,50,80,100,200,400,800).

The optimal population size of 192, which has been established in Section 5.2.1, is thereby used for

the inner loop GA. Once again, each series of tests consists of 5 simulations, and the average of the

test runs is used to determine the convergence rate. The results of the performed tests are illustrated

in C.1-C.8, and the convergence rates are listed in Table 5.3.

1The compute capability describes the features supported by a CUDA-enabled device.
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Table 5.3. Outer loop GA: Average number of iterations until convergence for different population
sizes. n/a is used when no convergence is achieved.

Population Size 20 30 50 80 100 200 400 800

Average number of iterations until convergence n/a n/a n/a 93 60 54 38 33

Again, the convergence rate improves substantially for smaller population sizes, but with

diminishing returns as population size increases. Population sizes of less than or equal to 50 do not

converge within 100 iterations. Once more, the kernel execution times for the different population

sizes are needed to compute the overall execution time of the optimization. Since the kernel execu-

tion time of the outer loop is proportional to the number of drive cycles in the lifetime of the vehicle,

the optimal population size can still be determined if the lifetime is reduced to just one drive cycle.

Fig. 5.3 illustrates the kernel execution times for various population sizes when the vehicle lifetime

is represented by the benchmark drive cycle.

Figure 5.3. Outer loop GA: Kernel execution time versus population size and effect of SM
occupancy.



www.manaraa.com

Chapter 5 Performance Evaluation 73

On a larger scale, the kernel execution time is roughly proportional to the population size.

However, upon closer examination, it is noticeable that it also exhibits step-like characteristics for

smaller population sizes. While the kernel execution time rapidly increases for every 7 additional

population candidates on the consumer-level GPU architecture (EVGA GTX460), it increases for

every 14 candidates on the GPU cluster architecture (Tesla M2050). This phenomenon can be ex-

plained by the number of streaming multiprocessors (SMs) of each device. Consulting Table 5.1,

each device of the consumer-level GPU consists of 7 SMs, and each device of the GPU cluster con-

sists of 14 SMs. In the CUDA programming model, multiprocessors are grouped into SMs, which

all execute the same instructions. When a CUDA program on the host CPU invokes a kernel grid,

the blocks of the grid are enumerated and distributed to multiprocessors with available execution

capacity [81]. If the number of blocks is not a multiple of the number of available SMs, then the

execution capacity of the GPU is not fully utilized, hence the step-like characteristics of the kernel

execution time.

Figure 5.4. Estimation of the optimal population size for the outer loop GA on a 2xTesla M2050
GPU architecture

Fig. 5.4 shows the overall execution time of the optimization on the GPU cluster with

two devices utilized. The estimated optimal population size that minimizes the overall computation

time is determined to be 100. This result is also valid for the other GPU architectures, since the

relationship between the kernel execution time and the population size is approximately linear (Fig.

5.3).
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5.2.3 Overall Performance

Figure 5.5. Overall optimization time for a vehicle lifetime of 100,000km on the consumer-level
GPU architecture and the GPU cluster.

Considering the results of Section 5.2.1 and 5.2.2, it is now possible to estimate the overall

optimization time for all architectures. The lifetime of the vehicle is set to 100,000km, and the

benchmark drive cycle is repeatedly used until the lifetime is met. Fig. 5.5 shows the results for

the GTX460 consumer-level graphics card, the single processing board and for the GPU cluster.

The estimated optimization time for an ideally adjusted algorithm setup is approximately 7 hours

on the GPU cluster when the computation load is distributed between its 8 devices, 55 hours on the

2 devices of the consumer-level GPU and 62 hours on the single processing unit.

The scalability of the optimization code on various GPU architectures is noticeable in the

obtained results. Doubling the number of utilized devices within an architecture nearly halves the

computation time of the optimization. This statement is valid for both the consumer-level card and

the GPU cluster. The load balancing between all devices in an architecture is handled by the host.

The invocation of the kernel and the memory transfer time are fast compared to the execution time

of the kernel on the devices. As a consequence, the load balancing time is an insignificant fraction

of the overall computation time. Hence, the CUDA code is fully scalable on multi-GPU systems.

It can be seen from Fig. 5.5 that the fully utilized consumer-level EVGA GTX460 2Win

outperforms one Tesla M2050 device for all population sizes. The Tesla M2050 is a significantly

more expensive computation board, which is especially designed for GPGPU applications. Looking



www.manaraa.com

Chapter 5 Performance Evaluation 75

(a) Estimated number of kernel executions until conver-

gence

(b) Estimated mileage simulated during the optimization

until convergence

Figure 5.6. Estimated number of kernel executions and simulation performance for various popula-
tion sizes.

at Table 5.1, the differences between the specifications of GPU architecture 1 and the specifications

of one device of GPU architecture 2 are marginal. The largest discrepancies exist between the

memory size and the memory bandwidth. Since both parameters are not the computational bottle-

neck for the FCHEV optimization, the consumer-level GPU delivers sufficient performance for the

application.

Lastly, Fig. 5.6 demonstrates the magnitude of the computation in terms of kernels exe-

cuted and in terms of the accumulated simulated mileage. The estimated number of drive cycles that

are simulated on the GPU architecture during one optimization run is larger than 1.2 · 1010 . In other

terms, the FCHEV model is executed at least 12 billion times during the optimization procedure.

The sum of the simulated mileage for all vehicles thereby exceeds 3 · 1011km. That is equivalent to

7.5 million trips around the world or 20 times the distance from the earth to the sun.

5.2.4 Section Findings

The choice of population size has a significant influence on the overall computation time.

For example, selecting a population size of 200 for the outer loop GA nearly doubles the computa-

tion time compared to the optimal population size. If, in addition, the population size of the inner

loop GA is set to 50, the overall optimization time will quadruple. This would extend the computa-

tion times on the GPU cluster to 28 hours and to an unreasonable 220 hours on the consumer-level

GPU. Hence, small changes in the population size can have large effects on the convergence effi-

ciency of the optimization routine.
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Generally speaking, understanding the software-hardware interaction on GPU architec-

tures is crucial knowledge for large-scale design optimization. Furthermore, a performance study

for GA-based optimization methodologies is an essential procedure to fully utilize the hardware’s

capabilities, especially if the proposed methodology has a multi-level design.

In terms of hardware cost, cheaper consumer-level graphics cards deliver similar perfor-

mance as more expensive GPGPU processing boards, as long as memory size and bandwidth are

not a limitation.

5.3 Hardware Benchmarking

5.3.1 Computing Architecture

To benchmark the computation speed of the GPU architectures against the CPU imple-

mentations in C/C++ and Matlab/Simulink, the overall computation time, which is needed to ex-

ecute a certain number of FCHEV simulations, is measured for each environment. For this, only

the actual FCHEV simulation is evaluated, and thus the optimization algorithms are not part of the

kernel. The benchmarking drive cycle of Section 5.2 is once again used as a reference, and the com-

putation time is measured for various numbers of simulations. The following hardware/software

environments are analyzed and compared in this study:

1. CPU architecture: 1xIntel W5590 3.33GHz, C/C++

2. CPU architecture: 1xIntel W5590 3.33GHz, Matlab/Simulink

3. CPU architecture: 4xIntel W5590 3.33GHz, Matlab/Simulink with Parallel Computation

Toolbox

4. GPU architecture 1: 1xGeForce GTX460, CUDA

5. GPU architecture 1: 2xGeForce GTX460 (EVGA GTX460 2Win), CUDA

6. GPU architecture 2: 1xTesla M2050, CUDA

7. GPU architecture 3: 2xTesla M2050, CUDA

8. GPU architecture 3: 4xTesla M2050, CUDA

9. GPU architecture 3: 8xTesla M2050, CUDA
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The kernel call of the C/C++ code is nested in a for-loop for this benchmarking study

and is therefore subject to sequential execution. A similar setup is implemented for the Simulink

code. A Matlab m-file contains a for-loop, which sequentially launches the Simulink FCHEV sim-

ulation. The design parameters and drive cycle data are allocated on the Matlab workspace, which

is accessed by Simulink during the simulation. It is possible to add parallel execution capabilities

to Simulink with Matlab’s Parallel Computation Toolbox. The toolbox allows for concurrently ex-

ecuting a certain number of Simulink simulations corresponding to the number of available CPU

cores. Since each CPU runs one simulation at a time, the maximum number of parallel simulations

is limited to 4 in this study. In the following paragraphs, the computational performances of the

three CPU implementations are analyzed and compared against the GPU implementations, which

were introduced in Section 4. Fig. 5.7 illustrates the benchmarking results for the range of 1 to

100,000 performed simulations on each architecture.

Figure 5.7. Benchmarking of 3 CPU-based FCHEV implementations in C/C++ and Simulink, and
6 CUDA-based simulations on various GPU architectures. For the GPU architectures, the number
of threads in a block is set to 200 if the number of simulations is larger than or equal to 200.

It is evident that the GPU-based implementations perform significantly better than the

CPU-based implementations for the entire abscissa range. The larger the number of executed sim-

ulations, the greater the advantages of the parallel GPU architecture. On the contrary, CPU-based

simulations do not benefit from larger simulation numbers due to their sequential nature. Hence, the

simulation time is approximately linear to the number of executed simulations. The graphical Mat-
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lab/Simulink environment by far requires the longest computation times of all tested environments.

This is because Simulink offers numerous graphical and functional features, which are computa-

tionally expensive, even if not utilized. Moreover, parallel computation with Simulink using the

Matlab Parallel Computation Toolbox only improves the single-threaded implementation by less

than 10% and is therefore inefficient. The C/C++ implementation, on the other hand, is remark-

ably more efficient than the Simulink implementations, but yet well behind the GPU simulations

in terms of computation time. Looking at Table 5.4, the speedup of the C/C++ code compared to

Simulink is larger than 30x for 100,000 performed FCHEV simulations. However, the slowest of

the tested GPU architectures still outperforms the C/C++ code by 164x, and the fully utilized GPU

cluster is a noteworthy 2190x faster. In overall computation time, the Simulink environment takes

40,000s (11.1h) to evaluate 100,000 simulations, the C/C++ code runs for 1,500s (25min), and the

fastest GPU architecture fulfills the same task in 0.7s. In the previous section, the minimum num-

ber of kernel executions until convergence of the optimization routine is estimated to be 1.2 · 1010.

Considering the discussed results, the overall optimization time for the Simulink environment can

be assumed to exceed 150 years, and the C/C++ implementation might take longer than 5 years to

converge. From a practical point of view, computation times of that magnitude are infeasible and

therefore require simplifications. Fig. 5.8 shows a closer view of the benchmarking results for the

proposed GPU architectures.

Figure 5.8. Benchmarking of 6 CUDA-based GPU environments for 1,000-100,000 executed simu-
lations. The number of threads in a block is set to 200.
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It is visible that all of the tested GPUs need a very high number of parallel tasks to reach

their maximum efficiency. The increase in computation time is approximately proportional to the

increase in number of simulations if more than 10,000 simulations are performed on the EVGA

GTX460 2Win GPU and if more than 80,000 simulation are performed on the fully utilized GPU

cluster (8 active devices). The measured computation time for 100,000 simulations ranges between

0.7s for the GPU cluster and 10s for one GTX460 device of the EVGA unit. Referring to Table

5.4, the computation speed within one GPU architecture increases proportionally to the number of

utilized devices. For example, a 1.99x speedup is measured between utilizing only one GTX460

device of the EVGA unit and using both devices. The speedup factor when doubling the number of

utilized devices on the GPU cluster is slightly smaller (1.92x, 1.83x, 1.97x), which can be explained

by the difference in hardware configuration of the two GPU architectures. While the two devices

of the consumer-level graphics card are incorporated into one GPU unit, which is connected to the

motherboard via one PCI x16 slot, each GPU unit of the cluster is allocated to a separate CPU node.

Hence, the increased communication latency reduces the computation speed .

Table 5.4. Speedup comparison matrix for 100,000 performed FCHEV simulations. Speedup factor
is obtained as column value divided by row value.
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Simulink: 1xIntel W5590 CPU 1× 1.06× 33.81× 10728× 20660× 37898× 74774× 5596× 11129×
Simulink: 4xIntel W5590 CPU 0.94× 1× 31.91× 10150× 19499× 35770× 70574× 5282× 10504×
C/C++: 1xIntel W5590 CPU 0.03× 0.03× 1× 315× 605× 1110× 2190× 164× 326×
CUDA: 1xTesla M2050 9.3 · 10−5× 9.8 · 10−5× 3.2 · 10−3× 1× 1.92× 3.52× 6.95× 0.52× 1.03×
CUDA: 2xTesla M2050 4.8 · 10−5× 5.1 · 10−5× 1.6 · 10−3× 0.52× 1× 1.83× 3.62× 0.27× 0.54×
CUDA: 4xTesla M2050 2.6 · 10−5× 2.8 · 10−5× 9.0 · 10−4× 0.28× 0.55× 1× 1.97× 0.15× 0.29×
CUDA: 8xTesla M2050 1.3 · 10−5× 1.4 · 10−5× 4.6 · 10−4× 0.14× 0.28× 0.50× 1× 0.07× 0.15×
CUDA: 1xGeForce GTX460 1.8 · 10−4× 1.9 · 10−4× 6.1 · 10−3× 1.92× 3.69× 6.77× 13.36× 1× 1.99

CUDA: 2xGeForce GTX460 8.9 · 10−5× 9.5 · 10−5× 3.1 · 10−3× 0.97× 1.85× 3.41× 6.7× 0.50× 1×
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(b) GeForce GTX460

Figure 5.9. Computation times for different degrees of utilization of the GPU architecture. The
FCHEV simulation for the benchmarking drive cycle is used as a reference kernel.

5.3.2 Device architecture

The computation speed of the Tesla M2050 device and the GeForce GTX460 device are

investigated for various degrees of utilization in the following paragraphs. As mentioned in Section
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5.2.1, the performance of a GPU is dependent on the design and the exploitation of the memory

hierarchy of the CUDA programming model. Therefore, each GPU device has an ideal mode of

utilization for a specific application. Fig. 5.9 illustrates the computation times of both discussed

devices for various architecture utilizations. The FCHEV simulation for the benchmarking drive

cycle is thereby used a reference kernel.

First, it is visible that the average computation time for all degrees of utilization is roughly

twice as fast for the Tesla M2050 device. Secondly, both graphs exhibit plateaus of similar com-

putation times but differing degrees of utilization. For both devices, the plateaus increase every 32

threads, which is equivalent to the maximum warp size of both units. If the number of threads in

a block is not a multitude of 32, the maximum occupancy of the GPU is not fully utilized. While

the width of the plateaus is identical for both devices, the lengths in terms of number of blocks is

notably different. Generally, the plateau length decreases for larger numbers of threads in a block.

The average plateau length of the Tesla M2050 GPU is approximately twice as long as the average

plateau length of the GeForce GTX460 GPU. This is due to the execution capacities of both de-

vices, since the Tesla M2050 incorporates 14 SMs and the GeForce GTX460 7 SMs. And thirdly,

if the number of threads in a block is larger than 290, the computation times are disproportionately

higher. This steep increase can be explained by the memory model of the GPU architecture. Au-

tomatic variables declared in a kernel reside in registers, which provide very fast access. However,

the register space is limited for each SM. The larger the number of threads in a block, the smaller

the number of registers available for each thread. If the register memory is exhausted, additional

variables will instead be allocated to the local memory of the GPU. Accessing local memory is

significantly slower, and the resulting memory latency therefore increases the overall computation

time.

The average computation times per simulation for different degrees of utilizations are

presented in Fig. 5.10. Choosing larger block sizes generally increases the overall computation

speed per simulation. On the other hand, determining the optimal number of threads is not as

trivial. The average computation time fluctuates like a sawtooth wave when increasing the number

of threads. The computation time thereby peaks every 32 threads for both devices corresponding to

their maximum warp size. However, the amplitude of this fluctuation is significantly larger for the

GeForce GTX460 since it incorporates less SMs to leverage the workload. Hence, achieving good

occupation levels is even more crucial for the consumer-level GPU. Furthermore, the GTX460

possesses less registers per block. Larger numbers of threads in a block therefore have a greater
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influence on the memory latency caused by the need to access the local memory than for the Tesla

M2050 GPU.
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(b) GeForce GTX460

Figure 5.10. Average computation time per kernel for different degrees of utilization of the GPU
architecture. The FCHEV simulation for the benchmarking drive cycle is used as a reference kernel.



www.manaraa.com

Chapter 6

Optimization Results

This chapter discusses results of the proposed optimization methodology for various ob-

jectives and is broken down into three sections. The first section demonstrates the applicability of

the DCGT for large-scale optimization. A driving profile, which has been created from recorded

driving data, is assigned to this DCGT. The optimization results for the DCGT-generated data are

then compared to the optimization results for the recorded data. Finally, advantages of DCGT-based

optimization over conventional optimization methods are identified and studied. In the second sec-

tion, a sensitivity analysis is performed to investigate how small changes in driving style impact the

outcome of an optimization. Next, optimal designs for various driving profiles and various levels

of driver aggressiveness are determined and presented. The efficiency gains, in terms of fuel sav-

ings, are then computed for each designs relative to non-optimal designs. The last section examines

the influence of parameter uncertainties on the optimization results using the example of battery

degradation.

6.1 DCGT-Based Optimization

The FCHEV optimization is performed for three cases to investigate if the DCGT is appli-

cable to large-scale EV design optimization and to study its possible advantages over conventional

optimization methodologies.

• Case 1: 10h of driving data recorded in the City and County of Honolulu (9% SNG, 38%

URB, 17% SUB, 11% RUR and 25% HIG): The drive cycles of the data set are sequen-

tially and repeatedly utilized by the inner loop of the optimization routine until the lifetime

convergence criteria of 100,000km is met.

83
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• Case 2: A stochastic driving profile created by analyzing the data set of case 1 according to

the proposed methodology of Sect. 3.1: The obtained stochastic parameters are implemented

into the DCGT. The DCGT generates one stochastic drive cycle for each iteration of the inner

optimization loop until the overall mileage of all cycles exceeds 100,000km.

• Case 3: A conventional approach of utilizing just one representative drive cycle: As described

by Austin et al. [38], characteristic driving pulses are selected from the recorded data set and

assembled to form a representative drive cycle as illustrated in Fig. 5.1. The drive cycle con-

sists of 2000 seconds of drive cycle data with an equivalent composition in terms of driving

scenarios to that of the recorded data set. The drive cycle is repeatedly used in the inner loop

of the optimization procedure until the overall mileage is larger than 100,000km.

Table 6.1. Results of the design optimization for cases 1-3 and average fuel consumption when the
obtained results are tested for the three different sets of driving data: ((a) 10h of recorded real-world
driving data, (b) 10h of DCGT generated drive cycles, (c) one representative cycle created from (a)
according to Austin et al. [38])

Design Parameter Case 1 Case 2 Case 3

Max. Motor Power 62kW 63kW 48kW

Number of Fuel Cells 331 334 231

Battery Pack Capacity 6.3Ah 6.4Ah 4.7Ah

Avg. H2 consumption for

objective cycle data of: Case 1 Case 2 Case 3

Case 1: 10h recorded data 3.87 g

km
3.89 g

km
3.86 g

km

2

Case 2: 10h DCGT data 3.81 g

km
3.83 g

km
3.79 g

km

2

Case 3: Rep. cycle (Fig.5.1) 3.95 g

km
3.98 g

km
3.75 g

km

Table 6.1 shows the optimal component design for all three scenarios. The proposed

designs for cases 1 and 2 are almost identical (x1=[84hp, 331, 6.3kWh], x2=[86hp, 334, 6.4kWh]),

which indicates that the DCGT provides a very good representation of the original driving profile

in all aspects. The DCGT power train design (case 2) is slightly more powerful for all three design

parameters, which might be caused by high-frequency velocity noise at very high vehicle speeds,

that are not sharply constrained by the DCGT (Fig. 3.6).

2The max. motor power is smaller than some of the power demand peaks. Therefore, the power demand was constraint
to the max. motor power, which distorts the result by slightly reducing the average fuel consumption.
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Figure 6.1. Case 3 optimization results tested with 20,000s of recorded drive cycle data. (a)
Recorded drive cycle displayed as speed vs time. (b) Duty cycle of the proposed design. The
power demand exceeds the maximum power of the proposed motor at several occasions. (c) Battery
state-of-charge (d) Fuel cell stack power demand.

The second part of the table lists the average fuel consumption for the three cases when

applied to each of the drive cycle data sets. As expected, the average H2 consumptions for cases 1

and 2 are very similar. Case 2 has a marginally higher consumption for all three data sets which can

be explained by the increased weight of the vehicle due to the larger power train.

Looking at the results of case 3, one could assume that the proposed design is superior to

the results of cases 1 and 2. The case 3 power train is significantly smaller sized than its competitors

which leads to drastically reduced fuel consumption for case 3 (3.75 g
km

vs. 3.95 g
km

and 3.98 g
km

)

and a slightly reduced fuel consumption for case 1 and case 2. However, the best solution is not



www.manaraa.com

Chapter 6 Optimization Results 86

Figure 6.2. Case 2 (DCGT) optimization results tested with 20,000s of recorded drive cycle data. (a)
Recorded drive cycle displayed as speed vs time. (b) Duty cycle of the proposed design. The power
demand does not exceed the maximum power of the proposed motor. (c) Battery state-of-charge (d)
Fuel cell stack power demand.

necessarily the solution that achieves the best fuel economy, but rather the one the achieves the best

fuel economy while also completely satisfying the power demand and providing stable operation at

all times.

Fig. 6.1 provides performance data of case 3 when executed for 20,000s of recorded

drive cycle data (objective of case 1). Evidently, this motor design is insufficiently dimensioned

for certain power demand peaks of the duty cycle which exceed 48kW (Fig. 6.1(b)). Due to its

relatively small occurrence rate, this phenomenon cannot entirely be accounted for by a single drive
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cycle. The lack of available motor power might be a critical safety shortcoming in driving situations

that require increased agility of the vehicle.

Fig. 6.1(c) and 6.1(d) show the battery state-of-charge and the power demand to the fuel

cell stack. It is apparent that the battery and the fuel cell stack are not sufficiently sized for driving

scenarios with an above average power demand, such as busy highway driving. The system enters a

critical mode of operation when the power demand is too high for a long period of time. During this,

the SOC drops rapidly to critical level, and the fuel cell stack is not powerful enough to compensate.

Apparently, the case 3 design cannot maintain this unstable mode for a long period of time without

reaching critical component levels, which might cause a sudden power-drop and possible damage

to the system.

Conversely, Fig. 6.2 demonstrates that the described stability issues are taken into account

when preforming a stochastic DCGT-based optimization. The motor (63kW) is sufficiently sized to

satisfy the power demand even for rare, above-average power peaks. During busy highway driving,

the SOC of the batter pack drops to a lower level, but the power loss is compensated for by the fuel

cell stack. None of the system components reach critical levels.

6.2 Design Sensitivity Towards Peak Loads

All design parameters are restricted by functional constraints during the optimization rou-

tine. If a proposed design does not meet all constraints, it is eliminated as a possible solution. Some

constraints are compulsory conditions that need to be fulfilled to guarantee stable operation of the

system. Other constraints are subjective restrictions, which typically cannot be logically specified.

For single-objective optimization methods, the subjective perception of the decision maker needs to

be quantified in order to define a distinct constraint. The optimization procedure will then provide

the best design solution for the choice of the decision maker. However, the decision maker cannot

be certain that his constraint choice was ideal if he does not study the sensitivity between the con-

straint choice and the outcome of the optimization. Small changes in constraints might significantly

better the fitness of the obtained solution. Sensitivity Analysis is a methodology that helps the deci-

sion maker understand the relationship between his choice and the optimization outcome, therefore

enabling a better informed decision.

So far in this study, the functional constraints of the design parameters have been set to

consistently fulfill the power demand for all possible scenarios in the lifetime of the vehicle. If just

one time in its lifetime the vehicle cannot meet the demand for an above-average power peak, the
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vehicle design is eliminated as a possible solution. However, if the corresponding peak demand was

not caused by an essential driving maneuver, a potentially good design solution might be dismissed.

The following case study investigates the sensitivity of the optimal design towards changes

in the intensity of power demand peaks. The basic driving style of the operator stays unchanged, but

occasional, above-average power demands are reduced in their magnitude. The operator can then

decide on the best trade-off between reducing the fuel consumption and decreasing the intensity of

some exceptionally demanding driving maneuvers.

Figure 6.3. Sensitivity analysis for 6 different power peak characteristics. The magnitude of the
power peak is determined as the difference between average power demand and maximum power
demand.

Fig. 6.3 explains the approach of the proposed sensitivity study. The maximum power

demand in the lifetime of the vehicle is used as a reference to define the maximum power intensity

dP , which is defined as the maximum power demand in the lifetime of a vehicle minus the average

power demand.

∆P (p, q) = max
t

Pd(t, p, q)− Pd(t, p, q) (6.2.1)

For the sensitivity study, an additional threshold constraint, which is based on dP , is introduced to

restrict the power peaks. The following 6 constraints are investigated:

• Case 1: 100%dP

• Case 2: 99%dP
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• Case 3: 95%dP

• Case 4: 90%dP

• Case 5: 80%dP

• Case 6: 60%dP

Since the power demand is a function of both the time and the design vectors p and q. dP is specific

for each solution candidate. Furthermore, to constrain the power peaks, dP needs to be known

from the beginning of the fitness evaluation. Therefore, the maximum and average power demand

need to be determined for each solution candidate during an a-priori lifetime simulation before dP

can be derived. The fitness evaluation is then executed one more time with the additional threshold

constraint applied.

The objective and methodology of case 2 in Section 6.1 is once again employed for this

analysis.

Table 6.2. Optimal design, fuel consumption, and improvement in fuel consumption for cases 1-6
of the sensitivity study.

Case 1: Case 2: Case 3: Case 4: Case 5: Case 6:

Design Parameter 100%∆P =99%∆P 95%∆P 90%∆P 80%∆P 60%∆P

Max. Motor Power [kW] 63 62 60 56 51 40

Number of Fuel Cells 334 331 329 323 317 302

Battery Pack Capacity [Ah] 6.4 6.3 6.2 6.1 5.9 5.7

Avg. H2 consumption [g/km] 3.86 3.85 3.83 3.79 3.71 3.54

Improvement in fuel consumption [%] 0 0.3 0.8 1.8 4.0 9.0

Table 6.2 presents the results for the 6 evaluated cases. Most noticeably, the maximum

motor power decreases proportionally with the reduction of dP . Since dP is relatively large com-

pared to the average power demand, the motor efficiency improves when decreasing the motor size

(Fig. 2.5). Therefore, the maximum rated load of the motor is roughly equivalent to the maximum

power demand in this example.

Furthermore, reducing the motor size decreases the weight of the power train, which in

turn abates the power demand. As a result, the power demands to the fuel cell stack and battery

pack decrease accordingly, which affects their optimal sizing. The optimal battery capacity and the

optimal number of fuel cells both shrink by 12% if the maximum motor power is constrained to

60%dP . Overall, the improvement in fuel consumption is insignificant for small changes in dP .
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However, the fuel efficiency increases by 4% and 9% for 80%dP and 60%dP , respectively. While

efficiency gains of that magnitude are substantial, they come with noticeable restrictions on the

operator’s driving style.

6.3 Application and Driver-Specific Vehicle Design

One of the major advantages of the proposed optimization methodology is that a vehicle

can be optimized for specific applications and driving styles. Generally, commercial vehicles are

designed for a variety of driving scenarios, whereby some cars might be more suitable for certain

driving environments than others. For example, smaller cars might be more efficient in busy city

traffic, while larger cars are usually more advantageous for fast highway driving. Nevertheless,

smaller cars typically feature a high enough level of motorization, which makes them suitable for

long distance highway driving. Thus, they can be considered all-purpose vehicles with a preferred

application.

An all-purpose vehicle might perform well in terms of fuel efficiency when used for a va-

riety of driving scenarios, but might be sub-optimal if the application range is limited. Application-

specific designs might be the better choice for driving profiles that are restricted in terms of their

driving scenarios. For example, in metropolitan areas, some vehicles might primarily be operated

in SNG and URB driving conditions. Knowing the cost of the option to possibly use the vehicle for

more demanding driving scenarios is of interest, since it might have an impact on the driver’s choice

of vehicle type.

Personal driving style is the second major influence on the fuel consumption of the vehi-

cle. Aggressive drivers accelerate harder on a more frequent basis and tend to drive faster. Vehicles

for aggressive drivers need to be capable of providing extra power for rapid maneuvers even in de-

manding situations, such as fast highway driving. For drivers with lower levels of aggressiveness,

smaller power trains might be sufficient and thus are more efficient. The driver’s level of aggres-

siveness is classified into three categories in this study:

• LOW (below-average acceleration, decelleration, cruising speed, and velocity noise frequen-

cies)

• MEDIUM (average acceleration, decelleration, cruising speed, and velocity noise frequen-

cies)
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Figure 6.4. Probability function for acceleration in an urban environment for three different levels
of aggressiveness (low, medium, and high)

• HIGH (above-average acceleration, decelleration, cruising speed, and velocity noise frequen-

cies)

Fig. 6.4 explains how different levels of aggressiveness are implemented into the DCGT

on an example of the acceleration probability during urban driving. The probability functions for

acceleration, deceleration, cruising speed, and velocity noise are the key functions for the charac-

terization of a driving style. The probability curves are shifted along the positive direction of the

abscissa to increase the level of aggressiveness, and against it to decrease the level of aggressiveness.

In this section, the optimal power train designs for five different driving profiles are com-

pared. Four of the investigated profiles are application-specific profiles, which are limited to certain

types of driving scenarios. The fifth profile is an all-purpose profile, that incorporates all possible

driving scenarios. Three different levels of driver aggressiveness are assigned to each of the five

driving profiles to study the impacts of driving styles on the vehicle’s design.

• Case 1: Vehicle operated solely in busy stop-and-go traffic: 100% SNG

• Case 2: Vehicle operated in stop-and-go traffic and normal urban traffic: 50% SNG, 50%

URB

• Case 3: Vehicle operated solely in non-busy urban traffic: 100% URB

• Case 4: Vehicle used solely for highway driving: 100% HIG

• Case 5: All-purpose vehicle equally used for all possible driving scenarios: 20% SNG, 20%

URB, 20% SUB, 20% RUR, 20% HIG
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In total, 15 driving profiles (5 cases x 3 level of aggressiveness) are created and applied

to the DCGT. The proposed optimization routine is then executed for each profile with a vehicle

lifetime of 100,000km. Table 6.3 lists the optimal component sizes and fuel consumptions for each

driving profile.

Table 6.3. Optimal component sizing and fuel consumption for various driving profiles and levels
of driver aggressiveness

Level of Driver Design Parameter & 50% SNG 20% SNG/URB/

Aggressiveness Fitness 100% SNG 50% URB 100% URB 100% HIG SUB/RUR/HIG

Max. Motor Power [kW] 14 14 14 27 26

LOW Number of Fuel Cells 88 130 116 254 253

Battery Pack Capacity[Ah] 3.17 3.46 3.81 5.56 5.34

Avg. H2 consumption [g/km] 0.75 0.73 0.72 2.11 1.52

Max. Motor Power [kW] 14 15 15 42 39

MEDIUM Number of Fuel Cells 116 144 152 317 254

Battery Pack Capacity [Ah] 4.37 4.81 4.86 6.73 6.82

Avg. H2 consumption [g/km] 1.11 1.07 1.04 2.99 2.25

Max. Motor Power [kW] 29 29 28 83 77

HIGH Number of Fuel Cells 163 186 172 480 364

Battery Pack Capacity [Ah] 6.90 6.84 6.58 9.94 9.94

Avg. H2 consumption [g/km] 2.26 1.80 1.34 5.17 3.82

Several key findings can be drawn from the obtained results. First, the average fuel con-

sumptions vary greatly between different applications (0.75 g
km

..2.11 g
km

) and different levels of

aggressiveness (0.75 g
km

..2.26 g
km

). Note that an aggressive driver consumes almost three times as

much fuel during SNG traffic as a driver with a low level of aggressiveness. Furthermore, HIG driv-

ing more than doubles the fuel consumption of a vehicle compared to URB driving. Interestingly,

the fuel consumption rates for SNG driving and URB driving are of similar magnitude.

The second key finding is that the optimal component sizing significantly depends on

the the application range of the vehicle. The driving profiles for cases 1, 2, and 3 have similar

specifications in regards to motor power and battery capacity. However, the fuel cell stacks sizes

are slightly smaller for pure SNG driving. This can be explained by the ratio of overall stopping

time to overall driving time, which is typically higher for SNG traffic due to the increased number

of stops. If the overall stopping time increases, the average power demand to the fuel cell stack

decreases. In the proposed vehicle model, the fuel cell stack is utilized as a power source with
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slow dynamic characteristics. Hence, the power demand to the fuel cell stack is similar to the

average power demand of system, while the battery pack acts as a buffer. Since SNG driving has

a high ratio of stopping time to driving time compared to urban driving, the power demand to the

fuel cell stack is relatively small. The fuel cell stack can therefore be of smaller size. On the

contrary, the case 4 and case 5 driving profiles require significantly more propulsion than the SNG

and URB driving profiles. RUR and HIG driving distinguish themselves from inner-city driving

through higher speeds and longer driving periods. In short, the vehicle operates mostly at high power

levels during these driving scenarios. Additionally, driving maneuvers, such as quick accelerations,

require exponentially more vehicle power if the vehicle speed is already high. Therefore, the higher

the average speed during a driving scenario, the larger the necessity for a strong power train.

Third, the optimal component sizing has a considerably dependency on the driving style.

The overall power demand increases exponentially with the acceleration rate. Aggressive drivers ac-

celerate quicker and more frequently than drivers with lower levels of aggressiveness. Furthermore,

the average cruising speed of a vehicle is typically higher for more aggressive driver. To combine

both statements, an aggressive driver not only accelerates his vehicle faster than a non-aggressive

driver, he also accelerates to higher speeds. Hence, aggressive acceleration is exponentially more

demanding than mild acceleration. Accordingly, power trains must be exponentially more powerful

for higher levels of driver aggressiveness.

The fourth finding concerns the relationship between the maximum motor power and the

ratio between the average and the maximum speed of a driving scenario. looking at Fig. 2.5, the

maximum motor efficiency lies between 50% and 80% of the rated load. If the vehicle is mainly

operated at power levels that are significantly smaller than occasional power peaks, the optimal rated

load of the motor is approximately equivalent to maximum power demand. The motor efficiency

curve does not have a significant influence on the optimization in this case. However, if the power

demand frequently reaches levels closer to the maximum power peak, the motor efficiency begins to

have an influence on the optimization results. The motor size is then determined so that the average

power demand of the driving scenario is close to the most efficient motor load. For example, case

4 naturally has a high ratio between average power demand and maximum power demand. For an

aggressive driver, the ideal maximum motor power is determined to be 83kW. Case 5, on the other

hand, incorporates the driving profile of case 4 with a share of 20%. The other 80% of its driving

profile, however, decreases the ratio between average power and maximum power to a much lower

level relative to case 4. Despite having to fulfill the same requirements during highway driving as
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case 5, the optimal motor power size is determined to be 77kW, which is close to the maximum

power peaks.

Lastly, the optimal capacity of the battery pack appears to be determined according to the

most demanding driving scenario of a driving profile. For instance, the optimal battery capacities of

case 5 are very close to those in case 4. Highway driving is certainly the most demanding scenario

for an all-purpose vehicle. As mentioned before, the battery pack is used as an energy buffer in the

power train and therefore serves mainly to compensate for transient power demand peaks. Since

highway driving generates the largest fluctuations in power demand, the battery pack needs to be

sufficiently dimensioned to account for these power oscillations.

6.3.1 Optimization efficiency

To examine the efficiency gains achieved by application and driver-specific optimizations,

the obtained vehicle designs are cross-tested for all other driving profiles. In this section, each

of the 15 results of Table 6.3 is tested for 100,000km of driving data for each of the 15 driving

profiles, which were used to obtain the results. Table 6.4 shows the average fuel consumption

and the difference as a percentage of fuel consumption between the optimal designs and the tested

designs. Several interesting conclusions can be drawn from the results.

First, significant improvements in fuel consumption can be achieved if the power train de-

sign is optimized towards the application. For example, a vehicle, which is designed for aggressive

highway driving, consumes nearly three times as much hydrogen during non-aggressive stop-and-

go traffic than a vehicle specifically optimized for that purpose. Moreover, an all-purpose vehicle

for aggressive drivers uses 2.5 times as much fuel during relaxed city driving than an optimized

counterpart. Even within the same level of driver aggressiveness, the potential fuel savings are sig-

nificant. If all-purpose vehicles are solely used for driving in an urban environment, they consume

up to 60% more fuel than an optimized vehicle for the same driving style.

Secondly, individual drivers can achieve substantial fuel savings if they are willing to

relax their driving style. As found before, the power demand, and thus the component sizing,

increases exponentially with the level of aggressiveness. If an aggressive driver of an all-purpose

vehicle reduces his level of aggressiveness from high to low, potential fuel savings of up to 55% are

achievable using the same vehicle.

Thirdly, the drawback of optimizing a power train towards one application is that it might

lead to a limited application range of the vehicle. This finding is illustrated in Table 6.4, where most

entries of the lower triangular matrix are empty. Power trains, which are optimized for less demand-
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ing driving profiles, are oftentimes not capable of fulfilling the requirements of more demanding

driving profiles. Either the total power demand is larger than the maximum rated load of the motor,

or the fuel cell stack and the battery pack are not capable of providing a sufficient power output

over a required time range. In both cases, the power trains do not match the required functional

constraints. Hence, if application flexibility is a design criterion for the optimization of a power

train, the exact requirements need to be represented by the driving profile during the optimization.

Finally, a smaller and lighter power train does not necessarily lead to a more efficient

vehicle. For example, the optimal motor and fuel cell stack size for all-purpose vehicles (case 5) is

noticeably smaller than for highway vehicles (case 4), while their battery sizing is of a similar di-

mension. Nevertheless, if all-purpose vehicles are tested for case 4 driving profiles, the average fuel

consumptions increase by up to 7%. The fuel cell stack and the motor are predominantly operated

at non-optimal efficiency levels, which outweighs the advantages of reduced vehicle weight.
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Table 6.4. Fuel efficiency matrix for the designs of Table 6.3 tested for 5 different driving profiles with 3 different levels of aggressiveness.
The first line of each entry is the average fuel consumption in g

km
, the second line is the difference in fuel consumption relative to the optimal

design. If a tested design cannot fulfill the demand of the driving profile, its entry is set to “n/a”.

Level of Driver LOW MEDIUM HIGH

Aggressiveness
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

FCHEV tested for

FCHEV optimized for 50% SNG 20%URB/SUB 50% SNG 20%URB/SUB 50% SNG 20%URB/SUB

100% SNG 50% URB 100% URB 100% HIG RUR/HIG 100% SNG 50% URB 100% URB 100% HIG RUR/HIG 100% SNG 50% URB 100% URB 100% HIG RUR/HIG

100% SNG
0.75 0.76 0.77 1.00 1.00 0.82 0.86 1.07 1.32 1.26 1.13 1.14 1.10 2.12 1.90

+0.00% +1.33% +2.67% +33.33% +33.33% +9.33% +14.67% +42.67% +76.00% +68.00% +50.67% +52.00% +46.67% +182.67% +153.33%

50% SNG/ 50% URB
0.73 0.73 0.73 0.80 0.93 0.76 0.79 0.80 1.14 1.12 1.02 1.00 0.89 1.90 1.70

+0.00% +0.00% +0.00% +9.59% +27.40% +4.11% +8.22% +9.59% +56.16% +53.42% +39.73% +36.99% +21.92% +160.27% +132.88%

LOW
100% URB

0.75 0.76 0.72 0.80 0.85 0.74 0.75 0.76 1.09 1.03 0.92 0.92 0.82 1.76 1.57

+4.17% +5.56% +0.00% +11.11% +18.06% +2.78% +4.17% +5.56% +51.39% +43.06% +27.78% +27.78% +13.89% +144.44% +118.06%

100% HIG
n/a n/a n/a 2.11 2.12 n/a n/a n/a 2.34 2.28 2.27 2.28 2.21 2.95 2.75

n/a n/a n/a +0.00% +0.47% n/a n/a n/a +10.90% +8.06% +7.58% +8.06% +4.74% +39.81% +30.33%

20% SNG/URB/SUB/RUR/HIG
n/a n/a n/a 1.60 1.52 n/a n/a n/a 1.65 1.73 1.67 1.68 n/a 2.50 2.36

n/a n/a n/a +5.26% +0.00% n/a n/a n/a +8.55% +13.82% +9.87% +10.53% n/a +64.47% +55.26%

100% SNG
1.24 1.19 1.14 1.60 1.28 1.11 1.13 1.15 1.58 1.51 1.35 1.35 1.25 2.44 2.18

+11.71% +7.21% +2.70% +44.14% +15.32% +0.00% +1.80% +3.60% +42.34% +36.04% +21.62% +21.62% +12.61% +119.82% +96.40%

50% SNG/ 50% URB
1.18 1.12 1.08 1.57 1.21 1.09 1.07 1.07 1.43 1.40 1.25 1.26 1.16 2.30 2.03

+10.28% +4.67% +0.93% +46.73% +13.08% +1.87% +0.00% +0.00% +33.64% +30.84% +16.82% +17.76% +8.41% +114.95% +89.72%

MEDIUM
100% URB

1.11 1.10 n/a 1.28 1.15 1.05 1.04 1.04 1.39 1.32 1.19 1.20 1.10 2.10 1.88

+6.73% +5.77% n/a +23.08% +10.58% +0.96% +0.00% +0.00% +33.65% +26.9% +14.42% +15.38% +5.77% +101.92% +80.77%

100% HIG
n/a n/a n/a n/a n/a n/a n/a n/a 2.99 3.21 n/a n/a n/a 3.69 3.49

n/a n/a n/a n/a n/a n/a n/a n/a +0.00% +7.36% n/a n/a n/a +23.41% +16.72%

20% SNG/URB/SUB/RUR/HIG
n/a n/a n/a n/a n/a n/a n/a n/a 2.35 2.25 n/a n/a n/a 3.17 2.78

n/a n/a n/a n/a n/a n/a n/a n/a +4.44% +0.00% n/a n/a n/a +40.89% +23.56%

100% SNG
n/a n/a n/a n/a n/a n/a n/a n/a 2.54 2.46 2.26 2.28 n/a 3.38 3.14

n/a n/a n/a n/a n/a n/a n/a n/a +12.39% +8.85% +0.00% +0.88% n/a +49.56% +38.94%

50% SNG/ 50% URB
n/a n/a n/a n/a n/a n/a n/a n/a 1.91 1.99 1.81 1.80 n/a 2.75 2.68

n/a n/a n/a n/a n/a n/a n/a n/a +6.11% +10.56% +0.56% +0.00% n/a +52.78% +48.89%

HIGH
100% URB

n/a n/a n/a 1.60 1.40 n/a n/a n/a 1.69 1.55 1.44 1.43 1.34 2.30 2.13

n/a n/a n/a +19.40% +4.48% n/a n/a n/a +26.12% +15.67% +7.46% +6.72% +0.00% +71.64% +58.96%

100% HIG
n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 5.17 5.42

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a +0.00% +4.84%

20% SNG/URB/SUB/RUR/HIG
n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 4.17 3.82

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a +9.16% +0.00%
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6.4 Impact of Battery Degradation

This section discusses the impact of battery degradation on the optimization results, which

is particularly interesting for two reasons. First, the proposed optimization methodology has the

unique capability of simulating and including lifetime effects in an optimization routine. Second,

the implemented battery degradation model is subject to substantial uncertainty, since the battery’s

degradation mechanisms have not been fully understood yet. If the degradation of a battery has

progressed further than was predicted at the end of the vehicle’s lifetime, the power train might reach

a critical system state. It is therefore of interest to understand the effects of different degradation

behaviors on the optimal component design in order to determine reasonable safety margins. The

following sections examine the discussed problem for two cases. The first case investigates the

impact of 5 different degradation curves with similar initial degradation rates but different lifetimes.

The second case examines the impact of four degradation curves with different initial degradation

rates but equivalent lifetimes.

Both cases are tested for an all-purpose vehicle (20% SNG, 20% URB, 20% SUB, 20%

RUR, 20% HIG) with a medium level of driver aggressiveness and an overall lifetime of 100,000km.

The elimination constraint for a maximum capacity fade of 20% is removed from the optimization

methodology for this study.

6.4.1 Case 1: Different lifetimes, similar degradation rates

Figure 6.5. Sensitivity analysis for 5 different degradation curves with similar initial degradation
rates but different lifetimes.
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Table 6.5. Optimal component sizing, lifetime degradation and average fuel consumption for curves
1-5.

Design Parameter &

Fitness Curve 1 Curve 2 Curve 3 Curve 4 Curve 5

Max. Motor Power [kW] 39 39 39 37 37

Number of Fuel Cells 257 255 254 245 240

Battery Pack Capacity [Ah] 7.17 6.97 6.82 6.74 6.68

Avg. H2 consumption [g/km] 2.26 2.25 2.25 2.23 2.22

Degradation at 100,000km [%] 12.0 8.2 6.1 4.6 3.8

Fig. 6.5 illustrates the 5 different degradation curves examined for case 1, and Table 6.5

provides the results of the optimization.

None of the examined batteries reached the critical capacity fade of 20% or more at the

end of the vehicle’s lifetime. The maximum degradation is 12% for curve 1 and the minimum

degradation is 3.8% for curve 5. Hence, all batteries are still in a state with relatively low degra-

dation rates at the end of their lifetimes. A sufficient safety margin therefore exists if the modeling

uncertainties only concern the lifetime prediction of the battery.

Despite the small differences in degradation, changes in the optimal power train design

are observable. The optimal battery capacity for the battery with the shortest lifetime is 7% larger

than for the battery with the longest lifetime. Due to the extra weight of a larger battery pack,

the motor and the fuel cell stack must be correspondingly more powerful. The difference in fuel

efficiency between the worst case and the best case is 2%.

6.4.2 Case 2: Equivalent lifetimes, different degradation rates

Fig 6.6 shows the four degradation curves for case 2, and Table 6.6 lists the corresponding

results. The curves range from a constant degradation rate to nearly no degradation until the end of

the battery life.

Compared to case 1, the impact on the power train design is significant for some of the

examined curves. The simulations for curve 1 and curve 2 considerably exceed the critical capacity

fade of 20%. To ensure sufficient power supply at the end of the vehicle’s lifetime, the capacity

of the battery pack must be significantly larger than was initially required. For example, the initial

capacity of the battery pack for curve 4 is 43% larger than the initial capacity for curve 1. The
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Figure 6.6. Sensitivity analysis for 4 different degradation curves with different initial degradation
rates but equivalent lifetimes.

Table 6.6. Optimal component sizing, lifetime degradation and average fuel consumption for curves
1-4.

Design Parameter &

Fitness Case 1 Case 2 Case 3 Case 4

Max. Motor Power [kW] 39 39 38 40

Number of Fuel Cells 253 254 236 221

Capacity Battery Pack [Ah] 6.60 6.82 7.57 9.44

Avg. H2 consumption [g/km] 2.23 2.25 2.28 2.45

Degradation at 100,000km [%] 0.9 6.1 25.2 42.1

optimal fuel cell stack size decreases for larger battery packs despite the increased weight of the

battery. Since the battery pack acts as an energy buffer, increasing its capacity might further reduce

the peak load of the fuel cell stack. Hence, smaller fuel cell stacks are sufficient to fulfill the power

demand. Nevertheless, the average fuel consumption increases by up to 10% for vehicles with larger

battery degradation rates due to the increased vehicle weight of resulting design.
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Conclusion

7.1 Summary

Large-scale optimizations of EVs have previously been too complex to address without

fundamental simplification. Simplified vehicle models and optimization objectives address com-

putational limitations but typically reduce the accuracy, versatility, and thus the reliability of the

results. To overcome these limitations, it was proposed to optimize the power train design of elec-

tric vehicles on graphics processing units. The achieved computational speedup allowed for the

removal of common simplifications to the model and optimization procedure. The extended, novel

approach broadened the objective of the EV optimization and therefore increased the significance

of the results.

Vehicle Model

To test the proposed methodology, a discrete, backward-looking model of a FCHEV was im-

plemented in three different programming environments, which are CUDA for GPU program-

ming, C/C++, and Matlab/Simulink. The power train of the FCHEV incorporates a PEMFC stack,

Lithium-ion battery pack, motor, and EMC. The power demand to the power train is calculated by a

vehicle dynamics model. During long simulation runs, a battery degradation model determines the

capacity fade according to the lifetime usage of the battery. Lastly, an energy management strat-

egy was proposed, which is easily optimized towards an application by means of only two design

parameters.

Drive Cycle Generation

A novel methodology to parameterize drive cycles was presented. The proposed method is uti-

100
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lized to stochastically analyze drive cycles or an entire driving profile. Probability functions were

obtained for each parameter of a recorded set of drive cycle data. The obtained parameter results

were then implemented into a drive cycle generation software tool that is capable of producing an

unlimited amount of drive cycles based on the characteristics of the original data set. Due to the

modular concept of the approach, it is possible to manually adjust the drive cycle parameters ac-

cording to the desired objective of the optimization. It was shown that the generated drive cycles

are a very good representation of the original drive cycles in terms of frequency spectra, speed

distribution, acceleration distribution, load characteristics, and occurrence probabilities. In addi-

tion, the new methodology was tested with a multi-parameter design optimization of a fuel cell

hybrid vehicle simulation. It was proven that the results of an optimization with generated drive

cycles are almost identical to the results of an optimization with the original data set. Furthermore,

the proposed methodology enhances conventional optimization methods by including entire driving

profiles rather than single DCs into the objective function. This extension, along with high accuracy

probability functions, accounts for uncertainties in driving patterns and for lifetime effects, such

as component degradation. Moreover, concerning assurance of system stability while minimizing

overall fuel consumption, the optimization results with the proposed methodology are found advan-

tageous to conventional single-cycle optimization strategies. The stochastic approach accounts for

nearly all variations of the underlying driving profile. In contrast, single-cycle optimizations are

limited to a narrow selection of driving pulses. Hence, crucial driving situations may be overlooked

when optimizing with just one drive cycle.

GPU-Based Optimization Methodology

In recent years, GPUs have emerged as an extremely cost-effective architecture for high perfor-

mance computing. Furthermore, they have been successfully used for many applications of gen-

eral purpose computing. Meta-heuristic optimization algorithms have been implemented on GPUs

with significant speedups compared to sequential CPU computing. This dissertation utilized recent

developments in computer science and computational hardware to advance modern optimization

methodologies for engineering systems.

A two-level optimization methodology was proposed for single and multi-GPUs to deter-

mine the optimal design of EVs and FCHEVs. The methodology consists of two genetic algorithm

optimization routines executed in two loops, an outer loop and an inner loop. The outer loop finds

the optimal component design parameters, and the inner loop optimizes the energy management for

each drive cycle. The nested framework of the proposed optimization corresponds to the CUDA pro-
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gramming model, where a grid contains multiple blocks, and each block contains multiple threads.

The population of the outer GA is represented by blocks and the population of the inner GA by

threads. To minimize computation time, the operators of the inner GA are executed on the GPU in

a fully parallel manner.

The optimization framework is generic and is therefore applicable to other vehicle archi-

tectures and different engineering systems with only minor modifications.

Performance Results

Computation times were compared for the implementation in CUDA for single and multi-GPUs,

then C/C++ and Matlab/Simulink using standard CPU architectures. The CUDA code on a GPU-

cluster with 8 devices performed more than 70,000 times faster than Matlab/Simulink and more

than 2,000 times faster than the sequential C/C++ code. Even the slowest of the tested GPUs, a

consumer-level GeForce GTX460, outperformed the C/C++ implementation by factor 164x.

It was found that the choice of population sizes has a significant influence on the con-

vergence rate. To decrease the computation time, the population sizes should also be selected in

correspondence to the CUDA programming model to maximize the occupancy of the GPUs. Futher-

more, it should be considered that the nested framework of the optimization procedure exponentially

increases the influence of population sizes on the convergence rate. Therefore, determining the op-

timal population sizes for the outer and the inner loop was concluded to be an essential procedure

before the actual optimization.

Optimization results

Chapter 6 proved that lifetime optimization based on driving profiles significantly improves the

quality of the obtained results. While single-cycle optimization cannot account for all possible

situations, the simulation range of lifetime optimization is large enough to account for nearly all

stochastic variations. Hence, the optimization results were significantly improved in terms of quality

and accuracy over conventional methodologies.

It was also found that if a driver exhibits noticeable reductions in peak aggressive driving

situations, the component sizes of the power train can be reduced, thus increasing the fuel efficiency

by up to 9%.

Coupling the effects of differing levels of aggressiveness with various driving profiles led

to optimal results for each pairing, which were then compared to reveal relative fuel efficiencies and

limitations. It was found that operating a car with an optimized power train design matched for its
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application and driver could lead to fuel savings of nearly 300%. However, such optimal designs

may not be applicable for all applications.

Finally, an sensitivity analysis using varying parameters of the battery degradation models

revealed significant effects on the optimal design. The degradation rate was the critical parameter

for determining proper sizing of components. Due to its sensitive nature, understanding the effects

of the degradation rate is crucial to prevent insufficiently designed components.

7.2 Contributions

Proof of Applicability

The applicability of simulating and optimizing complex engineering systems on the par-

allel computing architectures of GPUs was demonstrated on the example of a FCHEV.

Increase in Computation Speed

Computational speedup factors of more than 2,000x and 70,000x were achieved over a

sequential C/C++ implementation and the Matlab/Simulink environment, respectively.

Improved EV Optimization Strategy

Conventional EV optimization strategies had been limited by computational constraints

and therefore had been requiring simplifications of the optimization’s objective and the correspond-

ing objective function (system model). On grounds of the two previous contributions, the need

for most simplifications was removed. As a consequence, key simplifications were identified and

replaced by novel, more accurate methodologies. The following lists these novel approaches:

Lifetime Simulation

Instead of using just one drive cycle as input data for the objective function, the entire lifetime

of the vehicle can now be simulated. The increased simulation range allows for the inclusion

of the following features to the optimization procedure:

– Application and Driver-Specific Design

Lifetime simulation enables accountability for all possible driving scenarios, driving

patterns, driving maneuvers, and driving styles, even with small probabilities of oc-

currence or a chronological order assigned. It therefore allows for a greatly improved

application and driver-specific design optimization.
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– Component Degradation

Lifetime simulations within an optimization routine allows for consideration of lifetime

effects, specifically component degradation.

– Parameter and Modeling Uncertainty

Most physical models of engineering systems cannot be accurately represented due to

a certain degree of parameter and modeling uncertainty. The large simulation range of

lifetime simulations facilitates using stochastic representations of uncertain parameters

instead of average-assumed values.

Energy Management

A novel energy management control methodology for FCHEVs was proposed, which deter-

mines an efficient power split based on preliminary driving data. The energy management

controller is optimized towards an application by means of only two parameters and is there-

fore suitable for integration into expensive optimization routines.

Two-Level Optimization Routine

A two-level optimization methodology was developed for the power train design of EVs. The

proposed methodology is specifically designed for best performance on GPU architectures.

The framework of the implementation is generic and can be utilized for other optimization

problems with only minor modifications.

Stochastic Drive Cycle Generation

A drive cycle generation tool was developed to create input data for stochastic EV opti-

mizations with lifetime simulations. The tool distinguishes itself from other methods by operating

entirely non-deterministically in terms of data. Hence, the stochastic properties of a driving profile

can either be determined from observed data or be manually adjusted according to the objective of

the optimization.

7.3 Future Work

Vehicle Model

The proposed optimization methodology has been tested on a hypothetical FCHEV model. The

optimization results of Section 6 are valuable findings for a better understanding of how to improve

the power train design for certain applications. However, the model has not been validated and the
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findings thus cannot be considered universally applicable. Therefore, the next step is to upgrade or

replace the current FCHEV model with validated EV models of various propulsion designs, such as

PHEVs or Battery Electric Vehicles (BEVs). Optimization results can then be used as a reference

and as general guidelines for the design of modern EV power trains. The integration of a vehicle

model into the optimization routine is straightforward due to the code’s generic structure.

Battery Degradation

As mentioned in Section 2.3.1, the mechanisms of battery degradation, especially under dynamic

loading and varying environmental conditions, are not well understood yet. Once reliable degra-

dation models for EV applications are available, they should be incorporated into the optimization

routine. The relationship between capacity fade and application and driver-specific utilization of the

battery can then be examined to facilitate a better understanding of the optimal design requirements.

Optimization Algorithm

So far, only one GA (Section 4.3) has been tested with the proposed optimization methodology.

During the benchmark testing of Section 5.2.1, the GA exhibited performance deviations in relation

to its population size. GAs with varying population sizes [80] or different operator compositions

[13] might prove to be more efficient. It is also of interest to study and compare the performance of

other meta-heuristic algorithms, such as SA and ACO, when applied to the proposed optimization

problem on a GPU architecture.

Other Fields of Application

The implementation framework of the proposed optimization routine is generic and can easily

be adapted to solve various optimization problems on the GPU architecture. Specifically, the opti-

mization of other engineering systems with similar fuel cell power trains, such as unmanned aerial

vehicls (UAVs) or submarines, would require only minor modifications to the model. Mission pro-

files can then be used as stochastic input data for the objective function, which would be analogous

to driving profiles for vehicles.

Considering the achieved speedup reported in Section 5.6, optimization problems, which

have long been considered too complex to be solved in a reasonable time frame, might now be

possible to be solved. Examples include traffic-signal optimization for entire cities or combined

optimal design and control of smart grids.
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Dynamic Programming

The EMC of Section 2.5 provides results, which ensure sufficient comparability of solution can-

didates for the FCHEV model. However, the proposed EM methodology determines a good but not

necessarily optimal power-split. For other types of vehicles, such as ICE-HEVs with gear shifting,

EM control is more challenging. In these cases, near-optimal solutions might be required to achieve

comparability of the candidates and thus convergence of the optimization routine. Dynamic pro-

gramming is an optimization technique that is capable of determining the optimal power split. Xiao

et al. [97] have shown that dynamic programming is parallelizable and therefore well suited to the

GPU architecture. Hence, the potential performance gain of porting dynamic programming for EM

optimization to GPUs should be investigated with regard to its possible application for large-scale

optimization.
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FCHEV Model Parameter

v0 = 0.279 − 8.5 · 10−4(Tfc − 298.15) + 4.308 · 10−5Tfc
[

ln

(
pca − psat
1.01325

)

+
1

2
ln

(
0.1173 · (pca − psat)

1.01325

)]

(A.0.1)

va = (−1.618 · 10−5Tfc + 1.618 · 10−2)2(
pO2

0.1173
+ psat)

2 + (1.8 · 10−4Tfc − 0.166)

(
pO2

0.1173
+ psat) + (−5.8 · 10−4Tfc + 0.5736) (A.0.2)

c1 = 10 (A.0.3)

psat = 611 · e0.073·(Tfc−273.15)−2.93·10−4
·(Tfc−273.15)2+9.81·(Tfc−273.15)3−1.9·10−9

·(Tfc−273.15)4

(A.0.4)
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Appendix B

Inner Algorithm

Figure B.1. Convergence study of the inner GA with population size 30.

Figure B.2. Convergence study of the inner GA with population size 50.
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Figure B.3. Convergence study of the inner GA with population size 100.

Figure B.4. Convergence study of the inner GA with population size 200.
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Appendix C

Outer Algorithm

Figure C.1. Convergence study of the inner GA with population size 20.

Figure C.2. Convergence study of the inner GA with population size 30.
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Figure C.3. Convergence study of the inner GA with population size 50.

Figure C.4. Convergence study of the inner GA with population size 80.

Figure C.5. Convergence study of the inner GA with population size 100.
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Figure C.6. Convergence study of the inner GA with population size 200.

Figure C.7. Convergence study of the inner GA with population size 400.

Figure C.8. Convergence study of the inner GA with population size 800.
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